AD-A184 127

A SURVEY OF OBJECT ORTENTED LANGUAGES IN PROGRANNING

ENVIRONMENTSCU) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
H HAAKONSEN JUN 87

UNCLASSIFIED

F/G 1273

172

NL

PO IO TR

‘:(W, ol G M et e

flio b &
=ik
=

[
N
o

———
.
—
rr
A
re

s
it e

N
O

I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

- T R " vy @
¢ RIS .
“:b'lo "'

o '6 ‘t"'
l ‘\)D
l
'% :: ‘M‘\

&

..

i q'l

: - 8T HLE cor

¢ & NAVAL POSTGRADUATE SCHOOL
) o .
:." F [] .
Monterey, California

i'!:t n v
?E, w
R -
o - <L

|
- DTic -
. [~ C
E | -ECTE
l"
2 “p ‘
o
;
oyl
be. .
3 [HESIS
& * A SURVEY OF
o OBJECT ORIENTED LANGUAGES
.: IN PROGRAMMING ENVIRONMENTS
s by
o Harald Haakonsen
K June 1987
I
W
y
N Thesis Advisor: Bruce J. MacLlennan
o
" Approved for public release; distribution is unlimited.
s
-,
D
9

5
1
L]
]
|
1
[
1
t
1
1
]
1

Diins wamo WE UL e o g L R Al

. >
unclassified A , /’/7
SECCRTY T AP CATON OF Yo ¥ Bact e _d
REPORT DOCUMENTATION PAGE
tg REPQRT SECURITY CLASSIFICATION 1 RESTRICTIVE MARKINGS
unclassified
2a SECLUR'TY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;
20 JEC.A35FICAT-ON - DOWNGRADING SCHEDULE distribution is unlimited.
T SERFOAM NG ORGAN.ZATION REPORT NUMBERI(S) S MONITORING ORGANIZATION REPORT NUV-BER(S)
Ta NAME OF PERFORMING ORGANIZATION E0 OFFICE SYMAOL |73 NAME OF MONITORING ORGANIATION
Naval Postgraduate School ‘”g?”““" Naval Postgraduate School
6 ADORESS .Cify State. and 2IP Code) b ADDRESS (City, State. and ZIP Code)
Monterey, California 93943-5000 Monterey, California 93513-5000
32 NAME OF FUNCING , SPONSORING 8b OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDEN"FICATION NUMBER
CRGANIZAT.ON (If applicable)
3¢ ADDRESS (City. State and 21P Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROECT TASK WORK _NIT
ELEMENT NO | NO NO ACCESS TN NO

v oo

-8 (nclude Secunty Clasmfication) qURVEY OF OBJECT ORIENTED LANGUAGES IN PROGRAMMING
ENVIRONMENTS

C2ERASCNAL Tr
s 7EICNA AUTHORS) Haakonsen, Harald

Tl TvPi DF REPORT ‘3 T'ME COVERED 14 DATE OF REPORT (Year Month Day) 'S PAGCE «D.NT
Master's Thesis FROM "0 _ 1987 June 105

—
‘B SUFPIANEATARY NOTATION

T cosar. CODES 18 SUBIECT TERMS (Continue on reverse if necessary and identify by DICCk nymber)

"
.
U

GROLP 58 GROLP object oriented programming; Smalltalk; human-

computer interface; interactive integrated pro-

) gramming epviranment

"3 A85TRA(T (Continue on reverse if necessary and gentify by block number)

This thesis addresses object oriented programming languages; and a restric-
tive definition of object oriented programming languages is presented and
defended. Differences between programming languages are discussed and
related to interactive integrated programming environments. Topics re-
lated to user friendly interface to the computer system and modern pro-
gramming practice are discussed. The thesis especially addresses features
in object oriented programming languages that are important when a user
friendly interactive integrated programming environment is designed. Some
future research areas are suggested.

3 257337 ON AVAILABILTY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
@R ~cassFeoUNemTED (O same as aer O onc Lsers unclassified

Jca “ACAE OF RESPONS/BLE NO'V/OUAL 225 TELEPHONE (Include Area Code) | 2¢ CFF (r STMBO.
Prof. Bruce .J. Maclennan (108) 646-2353 Code o2M1

DD FORM 1473, samanr 83 APR gt 0N "2y DE LIed unt:l exnausted SECURITY CLASSF:CAT S& DF "= § 2alt

All otrer @a:1.0My ar@ OD1OICtE

1

unclassified

oa AL o A b ook ok ek i ah ek Ak

& Approved for public release: distribution is unlimited.

e ' A Survey of
o ~ Object Oriented Languages
C in Programming Environments

by

Harald Haakonsen
gl Lieutenant Commander. Norwegian Navy
‘.k Norwegian Naval Academy, 1977

3
Aot
o Submitted in partial fulfillment of the
requirements for the degree of
‘6%
o
i MASTER OF SCIENCE IN COMPUTER SCIENCE
!..| !
from the
:}:
Ny
&-l
>3 NAVAL POSTGRADUATE SCHOOL
- June 1987
u
A
b
:
" Author:
J
<’l. n)
;;a , Approved by:
o
s
'y
" Vincepd Y. Lum, Chairman.
o Departrfient of Computer Science
o
R WY M
L3 .
:::::: Kneale T. Marshath
o Dean of Information and Policy S¢
Lt}
5
1‘
gt TR Al 0 - mme L e - A AT A ottty Oy -.1‘-\\. -".,
MG AT AR IS ARACEIINERIBT SRR e ARETEREHEREREREALS S

™ S W P W W A

3 - A AL ETE &4
B el 20 Bak ol Rah ok sk 2l SEoa zah ard aot it et b Al Aok b i Al

ABSTRACT

v ‘This thesis addresses object oriented programming languages: and a restrictive
definition of object oriented programming languages is presented and defended.
. Differences between programming languages are discussed and related to interactive
integrated programming environments. Topics related to user friendly interface to the
computer system and modern programming practice are discussed. The thesis
especiallv addresses features in object oriented programming languages that are
important when a user friendly interactive integrated programming environment is

designed. Some future research areas are suggested.

.‘;Y

AL Toe

._....' '\' ..-_-,

A T N !ﬂ' T NN N LN T e e N _,;\l\‘..r . ,..)Lr
N - LR R SN N A NP e piad e ..g__‘.;
f-! (- ’:’_"p.ﬂ.‘fkfn!('a."‘l_" RO NI, A AR CVR I W WA I WY A

w1
;:;g
i
s TABLE OF CONTENTS
o)
0 TRobLCHON
s L. INTROD UCTION L e i e e e e e 11
i?:;. A, BACKGROUND ..ttt I
- B. OBJECTIVES ... i i e 11
C. THE RESEARCH QUESTIONS 11
KiA D. SCOPEAND ASSUMPTIONSooviiiiniiianaann, 12
:::"‘ L SCOPE 12
- 2. ASSUMPLONS « oottt ittt e e 12
‘ﬁ;‘ E. LITERATURE REVIEW AND METHODOLOGY 12
:ﬁ:: . Literature ReVIeWovuut ettt 12
o 2. Methodology ..ottt 13
2 F. SUMMARYOFFINDINGScoiiiiiiiiiiiani... 13
}. G. ORGANIZATIONOF THESTUDYcooviiiiiiin., 13
Atgty
f*’, II. INTRODUCTION TO PROGRAMMING LANGUAGES 15
e A. BACKGROUND FOR PROGRAMMING LANGUAGES 15
;‘,;: 1. What is a Programming Language? 15
:: S 2. The Purpose of a Programming Language 16
:::‘ 3. What are the Criteria for “Good” Programming
K0 Languages? 17
...),‘ B. INTERFACES IN A PROGRAMMING ENVIRONMENT 18
N I. Interfacesin Programmingcovuiivinnn.. 18
‘::: y 2. Dimensions in User Interfaces 20
',"'42: 2 C. THE SEARCH FOR A BETTER SOLUTION 20
1. Procedural versus Nonprocedural Programming
. o LanguUagesc..oiiiiiii e 20
\ ',E:: 2. What do We Want in the Future 22
X , D. WHAT KIND OF HELP CAN HARDWARE OFFER 23
1. Hardware Cost and Performance, and Its Implications 23
e 2. Visual INerfacesooiiiiii 24
-*IT
"
. 4
R
5
LR .,l
B e o
B M R A e e R

R e TR T

3. FIrmWare 25

E. SUMMARY OF THE CHAPTER, 25
I11. HUMAN LIMITATIONS AND RELATED TOPICS 26
A. BACKGROUND ... e e 26
B. HUMAN LIMITATIONS ... e 27
1. Variations in Performance between Programmers 27

2. The Cost of Large Complex Software Systems 28

3. User Interface Performance Issues 28

C. COGNITIVESCIENCE e 29
. Human Memoryo.iitiiii i, 29

2. The Learning Process, 30

3. Thinkingand Reasoningcc. vt n... 31

D. WHAT IS “"MODERN PROGRAMMING PRACTICE™? 32
1. Background 32

2. Modern Programming Practice 32

3. Why use Modern Programming Practice? 32

E. WHAT DOES "FRIENDLY " MEAN? 33
1. User Friendly Interfaces 33

2. Interactive SYSt€mMSiviuitii e 34

3. How do We Learn to use an Interactive System 35

F. SUMMARYOF CHAPTER 36
Iv. DIFFERENCES BETWEEN LANGUAGES 37
A. PROCEDURAL VERSUS NONPROCEDURAL 37
B. PROCEDURAL LANGUAGES 38
1. Historical Background i 38

2. How do we Cope with the Complexity of Programming? 39

3. ADA an Example of an Imperative Language 39

4. Pure LISP an Example of an Applicative Language 40

C. NONPROCEDURAL LANGUAGES 42
1. Historical Background 42

2. Prolog an Example of Logic Oriented Language 43

3. Object Oriented Languages, 44

D. SUMMARY OF THE CHAPTER, 46

uuuuuu

V. WHAT IS AN OBJECT ORIENTED LANGUAGE? 48
K A. HOW TO DESCRIBE AN OBJECT ORIENTED
K LANGUAGE? .. o e 48
l. General Description 48
A 2. Differences between Object and Procedure Oriented .
\ Programmingot 49
] B. TERMINOLOGY USEDcooverernennninani s, 51]
§ 1. General Background it 51
. P O o) 7Tt 3 53
;‘ 3 MESSagES L. 34
N . ClaS58S ot 54
: S, Instances 35
‘ 6. Methodso 35
Y C. INFORMATION HIDING\t 56
I Definition 56
: 2. Information Hiding in Object Oriented Languages 36
- D. DATA ABSTRACTION 57
2 L Defiition © . viver ettt et et 57
._ 2. Data Abstraction in Object Oriented Languages 38
i E. DYNAMICBINDING ... e 39
] L Definitiont 59 ’
_' 2. Dynamic Binding in Object Oriented Languages 39
F. INHERITANCE 60
A L. DEMItON -\ veeee e et e e 60
2. Inheritance in Object Oriented Languages 60
: G. SOME ADVANTAGES AND DISADVANTAGES IN
N OBJECT ORIENTED PROGRAMMING 61
K. [Advantagesoiiiniiii i 61
- 2. Disadvantagesiiiiiiii 62
b H. SUMMARY OF THE CHAPTER 62
" VI. INHERITANCE ...ttt 64
b A, BACKGROUND ...\ttt 64
: B. INTENSION VERSUS EXTENSION 64
25 C. INHERITANCE INGENERAL 65
o
L
Wy 6
;
?::
A
1y P -
T e R e e e e R e i

mmmm"“"-n_.".-. R

1. Inheritance versus Data Abstraction 65
i 2. Subclassing 66
[, 3. Inherited Instance Variable 69
4. Programmer’s View of Inheritance 7
D. MULTIPLE INHERITANCE 70
i Lo OVeIvIEW .. e 7
2. Graph Oriented Multiple Inheritance Solution 73
i 3. Linear Chain Multiple Inheritance Solution 74
4. Tree Conversion Multiple Inheritance Solution 75
E. SUMMARY OF THE CHAPTERo ... 73
VII. INTERACTIVE PROGRAMMING ENVIRONMENT 77
A. WHAT IS AN INTERACTIVE PROGRAMMING
ENVIRONMENT? L. 77
: Lo Definitions .. .o.vvviveit et 77
2. ImpactofToolso i 78
3. What is so Special about Programming Environments 79
B. IDENTITYOFOBIJECTS ... 80
1. Definitionof Identityo.o i 80
2. Idenuty in Interactive Programming Environments........... 80
3. What Language to use in an [nteractive Programming
Environment....... 81
4. Incremental Program Development §2
C. HOWTOPUTTHEUSERINCONTROL 83
D. LISP IN INTERACTIVE PROGRAMMING
ENVIRONMENTS ... 84
I, WhyuseLisp ... 84
2. The Interlisp Programming Environment 84
E. AN OBJECT ORIENTED INTERACTIVE
PROGRAMMING ENVIRONMENT il 87
I. WhyuseSmalltalk i ... 87
F. SUMMARYOFCHAPTER i, 90
VIIL CONCLUSIONS AND RECOMMENDATIONS ...t 92
A, CONCLLUSIONS o e 92
B. RECOMMENDATIONS e 93

u Ty TR LI TON PO N TOURTANTIFUTLUN UR AF AW TRfAE e TRTRE TR TR TR

T l. WhatCanbeDoneNow................................ 93
el 2. Future Research Areas 93

.................................

R APPENDIX A: SMALLTALK-80 TERMINOLOGYcoovoinii.n. .. 94
:;' APPENDIX B: TOWER-OF-HANOI IN PROLOG 96
o APPENDIX C: TOWER-OF-HANOIINLISP.........ooieiii i, 97
APPENDIX D: TOWER-OF-HANOI IN PASCAL

i APPENDIX E: TOWER-OF-HANOI IN SMALLTALK-80

e LISTOF REFERENCES ...ttt 100

P 3 W)
Ny
s g%
l“ :“.f
W
u,
e
V.=
D -t
N)\. - Pl

IS PP . R I Ot L POTO R d.\'—‘ _.1..‘4‘\-:\-/.‘-‘.. PR g
R e e e e A e e e e e e el e

""""""""""""""""""""""""

I PN P TULR TR TUMN T U v

: ' LIST OF TABLES

R
:: . EXAMPLE OF PROCEDURAL ORIENTED PROGRAMMING 50
&

) 2. EXAMPLE OF OBJECT ORIENTED PROGRAMMING

)

RN LY NS S s o, N TR S TR TN o S Lo S L L LS
AR kmm{&mm A ATRL AN RN O S *

P i

| LIST OF FIGURES

Interfaces in a Programming Environment 19

................................. 31

.. 34

l

1 Modeling Domains in Programming

2

1 Inheritance Example 61
1

2

3

User Friendly

Without Intersection in Class Membership 67

SUDBCIASSES .ot 68

Multiple Inheritance 71

< 6.4 Example of Multiple Inheritance Acyclic Graph 72
h 6.5 Example of Altered Graph Oriented Multiple Inheritance 73
\

O 6.6 Example of Linerized Chain Multiple Inheritance 7
o,

T Incremental Development

10

-3 L atn o~ uie aih ole abh ok add abd- i abinatdsall

I. INTRODUCTION

A. BACKGROUND

Traditionally programming languages have evolved towards a higher level of
abstraction offered to the programmer. Current programming languages have removed

the programmer from the hardware level of the machine, and offered him her increased

semantic power of the language which better captures the programmer’s concept, but it
is not vet normal to work in a fully interactive integrated programming environment.

” The problems we want to solve with computers steadily increase in size and
complexity. We often talk about “the software crisis,” and this can be viewed as a sign
that we are reaching the limit of what we currently are able to handle. The complexity
barrier is pushed further and further, but we still need to create the software we need in
the futrure to solve these difficult problems. Traditionally the tools in the programming
environment have been made by programmers for the benefit of programming. The
management’s need for tools has therefore not fully been recognized by developers who

began the implementation of interactive integrated programming environments.

B. OBJECTIVES

The objective of the thesis is to show some of the aspects that are relevant in the
development of interactive integrated programming environments, especialiv how

cbject oriented programming languages can make our work easier and more eflicient.

C. THE RESEARCH QUESTIONS

What is an object oriented programming language, and what is diflerent
compared to other programming languages? How can we develop a more user friendly
programming environment? What makes it user friendly? What kind of programming
environments do we have today? Are any programming languages better than others

to build user friendly interactive integrated programming environments?

11

R} - - RN »
.. - ' - -q. -
™ %

‘<
h)
8 't'ﬁ ‘-"‘\- 'i"-:‘_.'-)-' “u«"‘.a.‘ " ‘ } s

I L

P -
(4 6'

S ¥ RPN

130

5y

- el
.
.

b4

o

.'

R

Lo

-

’
oy .
.
5.-'
A
\1’

,

L e oa AL A s 4 i

D. SCOPE AND ASSUMPTIONS

1. Scope

The relevant material for this thesis is vast, so a brutal restricucn of the
subject has been performed. The discussion is mostly kept on a single user syvstem leve!
in order to reduce the complexity. Tvpical representatives from each major tvpe of
programming languages are studied, and used for comparisons. The sample programs

i the appendices are all written in programming languages available on personal
computers, e.g. Apple's Macintosh.

2. Assumptions

The thesis assumes that the reader has some basic knowledge of computer
science, therefore the commonly used expressions are not defined here. When 1t comes
t0 the discussion of object oriented programming languages, and inheritance, no
cackground knowledge is assumed. The subjects are covered more in depth with
explanations of new concepts. The discussion is based on the relevance to designers
and programmers, not so much on management’s needs.

The future seems to expose a growing number of people to computer svstems,
and working environments where computer svstems are an integrated part of the

whele. Therefore the discussion concentrates on the impact on the average user who s
not necessarily a computer specialist.

E. LITERATURE REVIEW AND METHODOLOGY

1. Literature Review
This thesis i a review, combining work from many sources. Most of the
literature comes {rom the academic environment, and each source normallv covers only

a smail research area. Especially when it comes to literature about object oriented

programming languages there seems not to be a clearly defined terminology.

Wm“"ﬂ"‘-"\"w T T W=

2. Methodology

The methodology used 1s based on an extensive study of literature available in
different areas: programming languages, software engineering. cogritive science,
computer science, human interfaces. etc. The purpose of the study is to get a feeiing
for what's involved in interactive integrated programming environments.

Small sample programs of the Tower-Of-Hanoi problem are written in
different programming languages (i.e. Prolog, Pascal, Lisp. and Smalltalk) in order to
get “hands on” experience, and to better understand the differences betwecn the

<

ianguages and environments.

-

F. SUMDMARY OF FINDINGS

The thesis concludes that the structure of the language defines the boundaries of
the thought of a2 human being, and that this is valid also for programming ianguages
and pregramming environmen:s. Object oriented programming languages have f{our
features: information hiding, data abstraction, dvnamic binding, and hierarchy of
:nheritance. This kind of object oriented programming language is well suited for
building interactive integrated programming environments that are user friendly.
Todav interpreted programmung languages like Lisp and Smalltalk are the languages
that most easily facilitate customuzing of an interactive integrated programming

envircnment to the user’s needs.

G. ORGANIZATION OF THE STUDY

The first chapters discuss various programnung languages, especially the
differences between them. The traditional programming languages are not covered in
depth, but object oriented languages (Smalltalk) are discussed in more detail. The
thesis establishes what minimum criteria a programnung language must have in order
10 be a real object oriented programmung language. Some of these criteria are covered
in more detail in order to give a better understanding of what object oriented
programming languages have to offer the designers programmers compared to other

.Jdnguages.

L ST I N B S
R R

At -) N N Y

ool

o
Al ol

22 E2 A

'

Y X T
L)

. . -
wSul Al by

- - P
=3 ..Af"\’;,’&q'k

W ‘nl‘v.l’o 0N ..l) ’V‘

TyTyTTTTw L a4 atd ais s obd ohd ond- ol okt

Next the comparison is brought a step further, and looks upon the interaction

and integration in some sample programming environments. Some of the features in
the environments are covered in more depth to bring forward what has been, and stiil
is, important for the evolution of the interactive integrated programming environments.

The thesis ends up with conclusions, and some recommendations for future interactive
tegrated programming environments.

14

w g --r-r""",(",p‘.a-,o{
el o HOGH HRAR NG SIS A L

YT YW ¥

YT AT T LR YL e

[I. INTRODUCTION TO PROGRAMMING LANGUAGES

‘. A. BACKGROUND FOR PROGRAMMING LANGUAGES

1. What is 2 Programming Language?

The history of programming languages goes back to 1846 when Lady Lovelace
programmed Charles Babbage's machine [Ref 1]. In doing this she showed that she
was thinking of a svmbolic system as a language. Many would say that it was her
knowledge of mathematics, and not her knowledge of poetry, that led her to this

abstract: ~n. Muthematical entities are abstrac:ions that do not change over ume. and

f the math matical theories are well accepted and understood.
& Computer programmung i1s a complex human activity, and the programming
X

language is the tool used to get the hardware to do what the programmer wants done.

Programming languages have changed over time. In the beginning it was machine

2 language, but as the complexity of the tasks we wanted the computer to solve for us
f grew, we got svmbolic assemblers, nigher level languages, and symbol manipulation
‘anguages. We have pushed the complexity barner further and further as human beings
" have tried 1o understand. and write, programs an order of magnitude larger then what
ﬁ i.as been {easible previously.
-,

The ‘ocal point in the computer science problem solving process is still the
programmirg language and the programming environment. Features in the
pregranuning language can atfect the wav a programmer approaches the design of a
solution to a paricular problem. A linguistic theory, the Sapir-Whorf hypothesis
{Re! 2], states that the structure of a language defines the boundaries of the thought of
a human being. There is a strong interaction between languages and thought. The

structure a language presents for manipulating werds and the vocabulary available for

representing ideas constrain the thoughts that can be easily and accurately represented.
In additicn the structures and patterns that characterize people’s thought process atfect
Low theyv are able to use the facilities provided by a programming language. In other
words, a limited programming ianguage will be a handicap for the programmer who
tries to realize his her full problem solving potential, so that he she must improvise to

get an acceptable solution to the problem he she wants to solve.

o I e N R 9

¢

z{

L)

Iy .

\, The encrmous variations in symbols, constructs, and syntax observed among
"~ . .

NN natural languages is also true of computer programming languages. Computer

» $' . .

b programmung language differences range from the long compound words of Cobol to

the syvmbolic brevity of APL. from the massive size of Ada to the compactness of
w Pascal.

4 2. The Purpose of a Programming Language

Programming languages are used to write programs in order to get some
computer hardware to perform a useful function. These programs have a dual function.

communication between human and machine, but also human to human
communication. A programming language must therefore provide all the necessarv

interfaces with the hardware of the computer system; at the same it time must also be

W able to capture the ideas of the programmer. High levels of abstraction increase the
> : . :

s semantic power of the programming language, and capture better the problem solving

: ,

) ..;3 concepts of the programmer. Programming is not a branch of mathematics: it is a

Rh unigue form of communication in which human beings take an active role and

o . .

a machines often a passive role.
- . . .

e The programming language, with its structure, can help us define the
)

e boundaries of our thoughts. We can tailor a language to suit our special needs. such as

W APL for mathematics or special database languages (query languages) for large

collections of data, in order to reduce the distance between the user and the wav the

S

Ko user thinks about the problem.

D One way of classifving programming languages is by the extent to which thev

. force one to write in machine level procedures, rather than in natural languages. This

“‘). scale runs from machine languages and assembly languages, through high level
X .

::',l:n prcgrammung languages, througn query languages, to natural language. As one moves
N . .

::.:: up the scale. the structures in the programming language take over more and more of

(W) . .) . . .

.ﬂ{:n the details of integrating the software with the hardware. Programming languages at

R the upper end of the scale make computers more accessible to more people, mainly
" A . .

o because they are nct forced to understand the hardware in order to interact with the

!‘ ~'

- computer system.

ke

.‘;-

i :'\'

o

b

.f"

F

16

@ sy
272 I S A2,

-

TTEVTWLUTE T TR T ="

3. What are the Criteria for “Good” Programming Languages?

A perfect programming language must be ideally suited for all situations, for
all users, for all applications. and for all computer systems. Todav the programming
ianguage, in addition, must be unambiguous, because the current state of technology
has problems letting the context decide the accurate meaning of the statements.

To design a language that is easy to understand and use, and at the same time
is powerful, we must accept a tradeoff between the principles such as the following
from MacLennan’s list {Ref. 3: p. 526-527]:

1. Abstraction: Avoid requiring something to be stated more than
once; factor out the recurring pattern.

2. Automation: Automate mechanical, tedious, or error prone
acuvities.

(O%]

Defense in depth: Have a series of defenses so that if an error is
not caught by one, it will probably be caught by another.

4. Information hiding: The language should permit modules designed
so that (1) the user has all of the information needed to use the
module correctly, and nothing more; (2) the implementor has all of
the information needed to implement the module correctly. and
nothing more.

5. Labeling: Avoid arbitrary sequences more than a few items long:
do not require the user to know the absolute position of an item in
a list. Instead. associate a meaningful label with each item and
allow the 1items to occur in anv order.

6. Localized cost: Users should pay for what thev use: aveid
distributed cost.

~J

Manifest interface: All interfaces should be apparent (manifest) in
the syntax.

8. Orthogonality: Independent functions should be controlled by
independent mechanisms.

9. Portability: Avoid features or facilities that are dependent on a
particular machine or a small class of machines.

10. Preservation of information: The language should allow the
representation of information that the user might know and that the
compiler or interpreter might need.

I Regularity: Regular rules. without exceptions, are easier to learn.
use, describe, and implement.

12. Securitv: No program that violates the definition of the language,
. or its own intended structure, should escape detection.

17

L AL N

b e AL

Mo Aok e ey ey

13. Simplicity: A language should be as simple as possible. There
should be a minimum number of concepts with simple rules for their
combination.

14. Structure: The static structure of the program should correspond
in a simple way with the dynamuc structure of the corresponding
computations.

L3

._.
n

Svntactic consistency: Similar things should look similar; different
things shouid look different.

16. Zerc-one-infinity: The only reasonable numbers are zero, one, and
infinity.
[t is at the present time not possible to design a programming language that is ideal in
all situations, for all users, for all computer systems, for all applications, even if we do
have the principles as in the above list. Today's programming languages are
specialized fer specific areas of use, in order to keep the size and complexity within the
human being’s limit. Some high level programming languages, like PL. 1 and Ada, are
designed to cover a wide area of applications, but the cost is increased size and

complexity.

B. INTERFACES IN A PROGRAMMING ENVIRONMENT

1. Interfaces in Programming -

The environment in which a programmer performs his her task includes: the
physical environment, the presence or absence of other people. the personalities of the
other members of the group, directives from management, learned programming
methodologies, reference manuals for the programming language and the computer
svstem. All of these affect the programmer in his her job. The term “programming
environment” can also be used more specifically, namely for a set of computerized tools
which ease the communication between the human being and the computer svstem

[Ref. 4: p. 559]. There are several interfaces in a programming environment that are

important for determining how the human being thinks and reacts [Ref. 4: p. 142}

l. Between the user’s conceptualization of the actual world he she wants to
represent and the programming language in which the user must Jescribe this
world so that the computer svstem can simulate it.

(39]

Between the programming language and the visual presentation of the language .
to the user.

3. Between the visual presentation of the language and the way the user must
physically indicate what action should take piace.

Figure 2.1 Interfaces in a Programming Environment.

These three interfaces are visualized in Figure 2.1 where: A is the real polar
bear to the simulated polar bear, B is the user interface to the computer, and C is the
simulation described in the computer.

The features of a programming language are the working tools for the

programmer. The programmer’s work in [inding a solution - * affected by the tools
avatlable to him her. The interfaces are part of this, and ¢ ead the programmer
towards certain problem solving methodologies, but it migh. “hat it is not the best

methodology for this specific situation. Pcople normally spend mu.. time describing
cata manipulation than they do describing control flow [Ref 3:p. 184-213]
Truditional programming languages on the other hand provide for the development of
large control structures with embedded data manipulation. The natural human
tendency scems to be to start with data manipulation and add control flow as an
afterthought. Miller [Ref. 5] concludes that natural language is not adequate for
procedural specifications, but that a limited and structured subset of natural languages

mught be more effective, and make the human-computer intertace more friendly.

19

.

Rt

-

{\

s oAl din A

2. Dimensions in User Interfaces
The programming environment must be accessible to the human being in
order to be of anv use. The interface between the human and the system is complex.,
and consists of a large number of design decisions. The most important interfaces are
iisted next. with some reievant questions added [Ref. 6: p. 13]:

1. Presentation; how are objects displaved and selected? Does the system translate
structure into text, i.e. pretty printing? Can it give more than one representation
of the same object. iL.e. multiple views?

to

Command interface; how are commands invoked? Are the menus context
sensitive or not? Select then command, or command then select? Binding
commands to keys?

3. Extensibility, how can a user tailor the system to his'her needs? Does the
svstem support extensions? What is the performance of extensions? What kind
of mechanisms are used for the extensions?

4. Window svstems; what is the underiving technology for implementing the
interface? What is accepted in the windows? How does the system support the
windows? Is the window system compatible with other systems?

The iist is onlv meant to give an idea of the complexity invoived when
designing a user interface. The question of how to present a programming
envircnment to the user is not vet fullv solved. Both the technology and the
methodology are inmature, and we have many contenders in the field. A very good
example. of new ideas in user interfaces, 1s the Macintosh personal computer produced
bv Aprle Computer Inc. This system shows how it is possible to give a novice user
access to a powerful personal computer svstem. The Macintosh is in many wavs an
interactive environment that lets the user stay in control throughout the session. All
applications written for the Macintosh system are supposed to follow a standard
idefined by Apple) user interface in order to reduce the learning time for the user. Itis

of course possible to violate these standards if one wants to.

C. THE SEARCH FOR A BETTER SOLUTION

. Procedural versus Nonprocedural Programming Languages
In the early days of computers, a few decades ago, the job for the designers
and programmers was to convert manually existing systems to new technologies using

computers. Today we still convert and refine existing systems. but increasingly the jcb

20

is to apply technology to do something new, things we never dreamed the previous
svstem could do. When we are not replacing an existing system, design no longer
follows directly from analyvsis. Analvsis of what exists yields insufTicient information to
design what will come to exist, so analysis and design becoms inseparable. The
problems we seek to solve using computer systems become more and more complex.
The traditional, obvious applications for computer systems, have already been done
and newer applications are olten:

1. More complex.

2. Less obvious.

3. Larger.

4. Used for longer period of time.
5. More likely to change over time.
This problem complexity, and the necessity to deal with many different details at one
time, makes programming generally very difficult. We are trying to master this
complexity by applving what has worked for us in the past. The programming
language designers have realized this, and have given us temporary relief, but every
time the problems we want to solve outgrow the current programming technique.
Svmbolic assemblers, higher ievel languages, and symbol manipulation languages have
in turn pushed the complexity barrier back [Ref. 4]. Programming language design is a
cumulative learning process, and programming is still a very voung branch of
engincering. The evclution of programming languages has resulted in solutions to a
arcader ciass of problems, and even new approaches toward the solution of presently
unsolved problems.

We have different considerations that dictate the design of programnurg

languages {Ref. 3: p. 523}

[. Uses (problems solved).

2. Users.

3. Computers on which the programming language can be implemented.
4 Successes and failures of the designs of the past.
Trece different considerations show that it is very difficult today to construct a single
lar.zuage that can cover all possible needs, even if we have the well defined design
rrinciries stated earlier in this chapter.
Tre search for a better programming language has given us a wide variety of

Jilerent languages, and dialects of languages. A nonprocedural programming

A Lo .,*-‘.-.-.',

N .- ._,- < . C e e
R IR e S e A R e

language is one that lets the programmer concentrate on “what” he she wants the
program to do, instead of “how” to do it. Related to this is the separation of the logic
component and the control component within the language. Examples are Prolog and
Smaiitaik, and this thesis will cover them in more detail later. Procedural programming
languages are the more conventional languages, in which the programmer has full
rasponsibility for the control component. Examples are Ada and Lisp, which also will
be covered in more detail later.

The terms procedural and nonprocedural will be discussed in more detail later.
No well defined and agreed upon definition exists, but examples from different tvpes of
programming languages will be used to clanfy the differences.

The procedural languages are often divided into two subclasses, Imperative
and Applicative languages. Imperative programming languages includes most of the
traditional languages (eg. Fortran, Cobol, Pascal), but not languages like Lisp, Prolog,
and Smalltalk. Prolog and Smalitalk are not applicative languages either. Imperative
languages depend heavily on an assignment statement and a changeable memory for
accomplishing a programming task. Most of these languages are basically a collection
of mechanisms for routing control from one assignment to another. In an applicative
language on the other hand the central idea is function application. that is to apply a

function to its argument. A subset of Lisp can be used as an applicative language.

2. What do We Want in the Future
Historicallv the introduction of high level programming languages relieved the
designer programmer from the machine code by introducing higher levels of
abstractions. The future should give us high level programming environments that
provide help for the designer'programmer in understanding and manipulating complex
software svstems. The human user should not worry about the detailed specification of
algorithms. but rather work with the description of the properties of the packages and

objects we use to build programs. The programming environment should give us a

higher level of abstraction so that we can specify behavior, i.e. what to do instead of
how to doit.

D. WHAT KIND OF HELP CAN HARDWARE OFFER

1. Hardware Cost and Performance, and Its Implications
The economics of data processing are changing rapidly. Historicallv, the
hardware cost of a computer systermn was so high that concern with hardware efficiency
was not only justified, but essential. Therefore programmers worried about the CPU

time and memory space their program code needed. Today the declining cost of

hardware makes developing and maintaining of many programs more expensive than
running them. Therefore emphasis is shifting from efficiency on the computer to
controlling software cost and user friendliness. Software cost in this context is the

W e

'l.ll

total accumulated cost over the whole life cvcle of the application, i.e. problem
definition, specification, design, coding and testing, implementation, maintenance, and

purging. The shift in cost also affect the design of programming languages, and at the

g by

moment we have a wide variety of experimental languages taking advantage of the

increased performance of computer hardware.

wahl

Alan Kay [Ref. 3: p. 433] in the late 1960s was convinced that in the future it

5 ¥

would be possible to put the power of what was then a room sized, million dollar
computer into a small machine (personal computer) placed on a person’s desk. He
asked himself what kind of language would be needed for this machine, and decided
that a simulation and graphics oriented programming language could make the
computer power accessible to nonspecialists. Xerox Corporation started design of
Smalltalk based on his ideas long before suitable machines were around. Xerox
develcped Smalltalk as a software system, rather than creating a specific hardware
package. The experience gained by developing applications in one Smalltalk system was
used to generate next generation of Smalltalk, and so on. The current svstem,
Smalltalk-80, was developed to be adaptable for implementation on a large number,
and vanety, of computer systems. This is one of the few cases were the language is
readv before the hardware to run it on.

Many of the facets of programming are currently caused by the way we
‘adjust” the user to the hardware available. The nature of programming is going to
change in the future, as the computer technology matures. Current programnung

a
techrigues are not adequate for building and maintaining svstems of the complexity

called for bv the tasks we attempt to solve. In the future we need to shift our attention
awav !{rom the detailed specification of algorithms, towards the descriptions cf the

properties of the mcdules and objects with which we build programs. Already todav

23

. tw _'--_'-~‘\ .--‘.-.'.h::
Dl PO L R T DTN I .
S e el

. - ~ PR - R . . S
R T e L SN T
PRIV R V. V. PP VW Y. P "V ¢ 8-

- . PO . F T S s P B SRS At et A, L
P I R PR L g ‘ "
PP o Coa e

o L I
AT VTR PU. U PAPE .

! the memory available is so large and so cheap (relatively) that we can see changes in
< the wayv people program. Higher efficiency of the hardware also removes much of the
work previously spent on speeding up modules using assembly language. Today higher
level languages can be used withcut much worry about etficiency problems because the
optimized compilers have become very good.

» Today we are not verv good at reusing old designs and modules (code). The
wheel is reinvented many times over because our current programmung languages and
methodologies do not enforce reuse as a resource saving method. Some of the
problems are caused by the lack of knowledge of existing modules that can be reused.
How do we build libraries etc.? Reuse of code is a complex and not well understood
problem today. There are many wayvs to attack the problem, and this thesis looks at
what object oriented programming languages can offer to reduce the problem of
reusabilitv. The topic of reusability will not be covered in depth, but also hardware
development makes a difference. Because of a better performance to cost ratio of
computer hardware it is today feasible to build libraries of general routines that can be
used in more applications with minor changes. General routines are normally slower
than optimized specialized routines, but because a general routine can be used more

often it 1s also possible to put in more resources to optimize it.

2. Visual Interfaces

The human interface has come a long way since the introduction of

computers. In the beginning even the assembly language (mnemonics) was thought of

- as very "human” and “user friendlv,” but today this is viewed as primitive. Todav's
bitmapped high resolution screen. with a pointing device (normally a mouse), gives the

user quite a different interface to the computer .ystem. The growing capabilities and

performance of hardware are used to ease the interaction between the human being

and his her hardware. Alan Kay's dream from the 1960s is a realitv today. We do

have personal computers with the power of yesterdays mainframes, and new

programming languages like Smalltaik use simulation and graphic presentation to make

o the svstem accessible to the nonspecialist {Ref. 7]. Systems like Macintosh and Amiga
‘. . . .

‘; are examples of how this has become available to the consumer who has little or no
>

background in use of of computers.

OOy
mm,ww- Lada ahal

v,
ffv"&

KKy Sty

-

e ‘.n‘};
2%t

¥ "‘:“- A

%',

s

Latiiar ke DA o ol e T e -

3. Firmware

Traditionally a system could be described by its software and its hardware.
Today this i1s not quite true because the difference between software and hardware has
become rather fuzzy. Evervthing that can be done in software can be implemented in
hardware and vice versa (not quite true because we need some hardware components
tc run the software on). The introduction of a user friendlv interface put a much
heavier load on the computer resources, and firmware has therefore been implemented
to speed up execution. A typical example is the Macintosh. When it was presented in
I934 it had 128k in RAM and 64k in ROM. The ROM is an example of firmware that
contains very efficient routines that control the user interface, and at the same time is

accessible to application programs.

E. SUMMARY OF THE CHAPTER

Computer programming is a complex human activity, and the programming
language is the tool used to get the hardware to do what the programmer wants done.
rogramming can be viewed as a unique form of communication in which human
beings take an active role and machines often a passive role. The structure of a
programming language defines the boundaries of the thought of human beings. i.e. the
programnring ianguage limits our ability to solve problems.

A perfect programming language must be ideally suited for all situations. for all
users, for all applications, and fc: all computer svstems. At the present time no such
perfect programming Janguage exists. but we have more specialized languages that keep
the complexnty within the human being’s limit.

[P T S JUE G SO P ot
N P e S LR AR
RPUALACHAL G SO PRTALGCREE .‘-.": RIS

G4 .'\A'kr'\r’

[S

’
1

A‘ L] £ A 4
PLAMRN

.ys..

3

P AR

iS00

of LA

ey

- - . . N - - . . Y - - S -~ - . e et
Tt e P T P PR L T . U -~ . .
';A.,.‘l":.-;(-h..u(.:. VPV WP PF VL O, 0. IS G, Sy . 9L 0 e 200 2 e 20 MU at 0 B 3 Aidiidndh

III. HUMAN LIMITATIONS AND RELATED TOPICS

A. BACKGROUND

More and more people get involved in tasks where a computer is used. It is no
longer oniv a small group of specialists that perform design and programmung. Aiready
teday a large number of people use specialized application languages, like Lotus 1-2-3,
in their dailv job situation. Most people do not think of using a word processing
package as programming, but in reality it is programming at a very high level of
abstraction for a veryv specialized context. In the future people will have rcutine daily
interaction with computer svstems. How do we build such systems? What limutations
Joes the human being have when it comes to the use of computer systems? This is the
kind of questions we now, and in the future, must answer. This chapter will trv to give
an overview of some of the features that are involved. In addition some ideas from
David Lorge Parnas are discussed in order to show that not oniv the programming
languages are important for which problems we are able to solve, but also how we
actually use the languages.

“Cognitive Science,” “Cognitive Psvchology,” and “Human Information
Prcocessing” all help provide the conceptual framework needed to think about the
abilities and limitations of the person designing or using the computer svstem. There
are three basic factors involved when a computer system is designed:

I. Know vour user: experience, limitations, ability, and motivation.
2. Know vour user’s task: visual and manual, what must be done.

Know vour user’s working condition: where the job is being done, what it 1s like
there.

All the three factors important to the system design involve the person that is supposed
1o use the production system. The user of the system seems to be the limiting factor
for many implementations of computer systems. The human being has many

disadvantages, 1.e we forget, we get tired, etc. On the other hand we also have many

advantages cver computer svstems (at least today), 1.e. we are good at recognizing

patterns, and at setting a situation into the correct context.

. . B St AT R U T I L TR T R
- a et . -t e . . R R Pl A S S SR oL e

- P PEUEE PR e . e
LEPTLEL RL R . .

DRI . R T O

'y B. HUMAN LIMITATIONS

1. Variations in Performance between Programmers

No commonly accepted theory of significant factors in programming or
program design seems to exists, but there have been some studies of programmer
performance. Brooks [Ref. 8: p. 737-751] found encrmous variations in performance
between different programmers of comparable experience for the same programming
task. He estimated factors between 5 and 100, and suggested that differences in the
strategy used by different programmers caused these large variations.

Perhaps programming activity is too complex a human behaviour to be
studied in detail, and must therefore largely remain a mysterious process. The onlv
way to achieve the necessary knowledge about the programming activity is to
systematically study programming behavior. Experiments have both dependent and
:ndependent variables. Dependent variables are what you measure, and must be
selected to capture the part of the programming task you are interested in. If vou use
several dependent variables to measure more aspects of the performance, the sum total
of the information (e.g. time used, numbers of errors, design strategy, rated case of use)
wiil give a better picture of what's going on. An independent variable can be the menu
iength, from which the appropriate choice must be selected. This kind of variable can
be used to measure programmer performance. Human knowledge is by necessity

) incomplete. We cannot know in advance what we might be able to kncw and what
mught be essentially unknowable [Ref. 9]. We must try to find things out. or as
Einstein said: “The important thing is not to stop questioning.”

Programmer limitations affect how much coding is lost because the

programmer did not have full mastery of his‘her computer. programming language

{and environment) or himself'herself, or a combination of these. [n addition the

programmer may be unaware of a certain algorithm, or unable to grasp a sufliciently
iarge portion of the problem at one time to get the overall picture of the problem
he she wants to solve. The problem we are facing today is how to give the
programmer full mastery of his'her job, and at the same time give him her the powerful
tools needed to solve the large and complex problems we currently want to find a

solution te.

' b
[

Pary

1. %'v"n "_l'_- .

RS VY I"(P

A

e e a - R T R T T .

.. PP N S P [T AT o IS A AL g
Ty ‘;1*,(‘ {;Jl:rf‘,._-t‘._!.'!._:._-’\v'._f.\‘ '_";-_ N S e Al T E T T e,
oy <

. W Mg

o R AR T L
Nt o o e LA e AT T s

mmmmﬁw“w-wv A

2. The Cost of Large Complex Software Systems

We have long advocated economy of scale for manufacturing, but does this
applv to software systems? To preduce a large integrated software svstem takes a long
time, and costs large amounts of resources. [f we are totally dependent upon bug free
sorsware, we are at the moment in deep trouble. The testing dilemma was stated by
Dijkstra [Ref. 10: p. 6] as: “program testing can be used to show the presence of bugs,
but never to show their absence.” Today program testing is possibly the only way to
ensure an acceptable qualitv of a complex program. Although a large integrated
seftware svstem is more economical when it is in active use, it naturally costs more if
we must take it out of use due to an error. Because it is larger, there are aiso more
things that can go wrong, so things will go wrong more often. Finally because of its
size it is more difficult to find out what is wrong, and it will therefore take a longer
time before it is running again. Human limitations, when it comes to complexity of
svstems, seem to reduce the advantage of large integrated systems. Especially if the
modules depend upon each other, and therefore if there is an error in one, none can be
used. Some advocate that systems like the "Strategic Defence Initiative” (SDI) are
cutside our capabilities when it comes to software design because of its size and
complexity. David Lorge Parnas strongly opposes the SDI due to human limitations;
he said: "the state of the art in software is significantly behind that in other areas of
engineering.” {Ref. 11: p. 1327) The lack of testability of SDI software makes life
Jifficult; he stated: “we would need a software svstem so well-developed that we could
have extremely high confidence that the system would work correctly when called
upon.” [Ref. 11: p. 1328]

The bottom line is that not only do large integrated systems today cost an
enormous amount, but we also have the “cost” related to trust in the svstem, 1.e. do we
trust our svstems enough to let them control our life? The cost related to trust is more
related to politics than monev, therefore it is less measurable and much more

complicated to agree upon.

3. User Interface Performance Issues
Vision is our primary sense, but it has its limitations. There are many things
the eve does not see, so the screen on the terminal computer can take advantage of
this. The human visual svstem has several characteristics that control the use of

computer systems for visual representation of data and information. The human

S T
e v, -.-\:"_-.-..-\..'1

PR SO IR 1%y :.;-._'.._..m...g‘.zﬁ'{n']'

A ik Aal Adll e

N

perceives as simultaneous changes that occur in less than 20 ms. And if successive

.‘r
[4

s

frames on a.screen of a moving image are redrawn in less than 50 ms, the human
perceives the object as moving smoothly. And finally if feedback to user initiated
events are produced in less than 300 ms. the human perceives it as occuring

instantaneously. These indicated speeds represent limuts for which objects move

F)

smoothiv and do not interrupt the user’s train of thought. The bottom line is that the

8

humar is very slow compared to computers, so the drain on computer resources to give
a good visual presentation is liittle compared to the advantages it can give. [Ref. 12: p.
176]

Colors used on the screen also do have an impact on how we react [Ref. 13: p.
3-33]. Because vision is our primary sense the designers of interactive programming
environments must take this into account. Use of colors in the interface often means
that the resolution is poorer than with a monocrome screen, i.e. there is no such thing

as a “free lunch.”

C. COGNITIVE SCIENCE

1. Human Memory

Andrew Monk [Ref. 13: p. 49] states: "Human memory is currently believed to
be a complex syvstem of independent storage systems.” These storage systems have
different characteristics. Long term memory seems to use a semantic code and stores
information in a highlv organized manner. No capacity limit seems to exist for this
storage. Retrieving information seems to be a process of reconstruction, instead of just
output of held information. That means that the output may be different from what
was put in. The short term memory is easier to measure. test and is therefore better
understcod. It consists of “"buffers” that holds the information for a very short period
of time while it is processed by the brain and stored in long term memory. The long
term memory seems to be limited to only being able to code information that :s
meaningful to the user. Therefore language designers and program designers must
ensure that the user has a mental model of the system used. The svstem environment
should work the way human beings think. Current programming languages often are
designed to ease the parsing problem instead, i.e. the use of prefix constructs instead of

nfix constructs.

YW TEmTTER T®m YW E

2. The Learning Process

Learning is a complex process of integrating new knowledge into a structure
of what is already known. Writing a program 1s a process of learning, both for the
orogrammer and the person who 1s going to use the software product. This learning
takes place in a context of a particular hardware svstem, particular programumng
language or programmung environment, and depends also on the society around us.
Much of the information the maintenance programmer has, is in the source code of the
crogram. This 1s a tvpical example of the dual role of a programming language. i.e.
numan to human, and human to computer system, communication.

Reading and understanding a computer program listing 1s a cognitive task that
is critical to the development and maintenance of software. In the interaction with the
computer syvsiem the user often receives and sends information in the medium of
written language. This :nformation, the words and sentences used, must be related to
each other for the reader to be able to understand the information as a whole. The
reader 15 performing a problem solving exercise [Ref. 13: p. 37]. How the human
understands this piece of written information depends upon the characteristics of the
zext. but also it depends on the programmer’s past experiments and familarity with the
concepts involved. Especially :n the maintenance phase, because normally this person
is not the person who wrote the program In the first place, it is necessary to understand
how the program works in order 1o update or enhance it.

The construction of a program can be viewed as building a mapping from
some Jdomain external to the program into the set of objects and operauons avaiabie
in a partcular programmung language or system. The task of understanding the
program becomes one of constructing information about the modeling domains used to
bridge between the problem and the executing program. Within each domain there is
:nformation about the basic sets of objects, including their properties and relationships,
the set of operations that can be performed on the objects, and the order in which
these operations take place {Ref. 14]. Figure 3.1 gives a visual representation of a

“banking” problem domain.

Natural languages mayv be the only language that can serve across multiple
demains. The problem is that natural languages are inconuse and overicad many
words and expressicns. Perhaps we uitimately have to change our ways of thinking a
little bit in order to fit our computers, because current technology does not ailow

natural language as the communication between the human and the machine.

T P
IR IR At S '.'ﬁ" o TV Y S L e
.'.:,-5.'4.-,“’-@&‘1 '.'.‘;"')s‘"m"mtd" SO

e etttk i bk e ateiehiiiahitn it

u "\.l'-

K ORI Y
LRI

@
RPRAF

4

W Tias vrew oo or T

Lt 2ot) Aok Aot Sako ot Aeaihdhaieiiiid

| PROBLEM :
DOMAIN
ALGORITHM '
: [BANK'NG DOMAIN x
| PROGRAMMING |
| HARDWARE |
COpE DOMAIN
? (compunn J |
numbers

Figure 3.1 Modeling Domains in Programming.

3. Thinking and Reasoning

Neil Thomson (Ref. 13: p. §] describes the human being: “Of all the human
facilities, our ability to reason is the one which appears to set us apart from the
animals.” Thinking scems to be a combination of mductive and deductive reasoning,
but at the same time the two are difficult to separate. The process of arriving at a
logically necessary conclusion from initial premises 1s deductive reasoning, and it 15 a
logical process. Inductive reasoning on the other hand is not a logical process, but
refers to the production of a gencral statement from specitic instances. The problem s,
how can onc build computer systems with a reasoning process as flexible as human
reusoning. So far we have not been able to do this, but we have a large number of
cxpert systems that are used as working toals in specidlized domains. Typicaiiv the
expert system asks questions and the user supplies the expert system with the facts
needed. One problem with expert svstems is to specify and quant:fy the kncwledge of
an expert in a specialized f{ield: another problem 1s how to wnte the program thut uses

this knowledyee in an intelligent way.

RR

;. . - .
I DU PP I S Gov o)

D. WHAT IS “MODERN PROGRAMMING PRACTICE”?

1. Background
The “software crisis” has not been solved vet. New languages have moved the
complexity barrier further and further, but not really solved the problem “how to

deveicp large and complex programs.” David Parnas [Ref. 10} savs we must learn to

=

se the programnung ianguages we have. The problem is not so much the coding itself,
as the analysis and design of the programs in order to make the coding a straigh:-
ferward process. In other words we must understand the problem and our

programmung language in order to be able to solve new, large, and complex problems.

2. Modern Programming Practice

Modern programming practice is helpful in solving complex problems. This is

a programming technique where more work is put into the analysis and design phase in
order to save later cn in coding, maintenance, and enhancements. David Parnas is a
streng supporter of this methodology, which emphasizes the following:

[, Structured programming.

2. Information hiding.

3. Data abstraction.

<. Top down design.
The basic principle of structured programmung is like the military strategy of divide and
cenquer. A program, or software module, i1s broken into small, independent, single
functon modules which are clear and easy to follow logicallv. These modules are
themseives composed cf even smailer blocks: the decision, sequence, and repettion
structures found in most programs. The details of structured programming will not be
covered in depth because thev are of little relevance to this thesis, but the other
elements of the methodology will be covered in more or less detail in the context of the

regrammung languages and programmung environments discussed.
g g

3. Why use Modern Programming Practice?

Many of the problems we are working on today are large and complex. A
aarge number of people and resources are involved, therefore we have a need tor
management cf the project. The management is responsible for: allocation of
resources, deadlines, go or no go decisions, funding etc. To be able to tuke the
Jeenons, and make comparisons between different projects. it needs measurables. [n

thivocontext measurables are anvthung that can be measured. Measurabies are

mmmmv""""“ -

guanufied data that is used for comparisons, evaluation, etc. In a nroduction
environment the management is normally the one who specifies the policv, standards
and interactive integrated programnung environment to use. Many of the toois in b
environment will therefore be used for managing the whole lifecvcle, and not enly for
the design code phase. There may be a conflict of interest between management and
other users of the svstem because of the measurables. Often technical people do not
want 1o give measurables because thev are afraid of later being confronted with them.

[1 1s better to be clear than right, because if vou are clear someone might tell
vou that you are wrong. The system must be managable, 1.e. measureable for the
management. In addition, maintenance of software is expensive and time consuming.
The best wav to minimize the maintenance cost is to design the program with ease of
ma;nterance in mind. One way to do this is to use modern programmung practice, and
one kev s information hiding. If this is done, most changes wiil be limited to the logic
contamned in a single module, and the possible number of interactions between the
mcdujes decreases enormously. Therefore the ripple effect will be munimuzed, as
changes made to an independent module should have little or no impact on the logic
pertormed by other modules. Modern programming practice often results in levels of

abstractions, levels of protection, 1.e. programs that have a lavered structure.

E. WHAT DOES “"FRIENDLY” MEAN?

. User Friendly Interfaces
The environment in which programmers work 1s a rich and compiex
environment, {ull of human involvement and interaction, change, and nrusicad:ing
appearances. In this context friendliness would be the distance between the things the
user thinks about doing, and the things the user actually can do in the programmung

envircnment. The three interfaces, see Figure 2.1, can give a measurement of how

triendlv the svstem 1s to a user.
People are ditTerent, and react differently to a given sumulus. This means that
what s fnendly to one person may not be equally friendly to another persen. Generally

1 visual representation, along with reduced interdependencies among dufferent parts ¢t

the svetem, munes @ programnung environment more {nendlv,

-
.

s

P P UL I L R NN -
ST A -, St e e . -
T M AR SR YA VPO PP wrs

e aa a2 da aea aad Aed Aes diadt dade sttt
n
‘i

Figure 3.2 User Friendly.

User friendliness depends on how easily the human can process input from a
computer system, and how easy the human can output something to the computer
sysiem and have 1t understood. See Figure 3.2 for a visual representation of user
triendliness. Note that we are talking about the input to the human being and not (as
it normally is represented) to the computer system. This is done to emphazise the shift
in Jdesign that are taking place 1n some of the more modern implementations of user
inter{aces, which put the user in control throughout the session. The interaction with
the svstem 1s on the user’'s prenuses. The trend 1s to concentrate more and more on
user friendly interfaces between the user and the computer svstem. On many systems
tius shows up as windows, menus, and use of a mouse. The objective is tc make the

process of communication between the user and his her computer system more

ntuitive, 1.e. more natural to the user.

2. Interactive Systems
A wide wariety of hardware can be used in an interactive environment 1n order
to help communicate mformation from the user to the computer svstem: kevbouard,
mause, pomnting device, specch ctc. At the same tme there are mary wavs the

compuer svstem can communicate informations to the user. This communication of -

Tad
F

ot B ‘.AA‘. s - .-_ . ’_'.._‘.‘_'--_“. I -‘ .
.r.-..- ER . z._r..._.,_ Ry

-- e A -.._\" ":;.::.' -_:,.'.J_ A T .‘h\A‘LA_ e A
TN d.}l't_k_u"m{—\-._ﬂ-.\- . - A R I D

<

oy]
AR

)

ywww - —w W WYTHI WY Mmoo

information must be made such that it is easy for the user to find the information
required, as well as to make it easv to understand once found. An interactive
integrated programming environment should offer the user many different structural
views of the program. Examples are: when editing the programmier may want to view a
program as a parse tree, when reading as a document (text), when debugging as a
centrol flow graph. and when looking at the screen as a visual image. Computer
resources should be used to make this interaction as intuitive as possible to the user,

1.e. the user should not have to fight the system.

5. How do We Learn to use an Interactive System

Today interactive integrated programming environments, mostly based on
Lisp. seem to be characterized by tools that interact with each other frequently. The
programmer may easily switch between an editor, interpreter, debugger, and compiler.
Each of these tools must know, to some degree, about other tools. The user interface
must be as natural as possible for the human programmer. To achieve this the
environment must take advantage of all the human’s strong sides: ability to recognize
patterns, visual sense, auditory sense, etc.

We have a great deal of knowledge about the human visual and auditory
senses. In addition we have more or less accepted theories about how we think etc.
Bur at the moment we do not know how to put all this knowledge together in order to
produce the opumun interactive integrated computer svstem. The human being s
characterized by the ability to change context without loss of information. We are
ctten working on cne problem. but suddenly we get an idea or mavbe the thought just
wanders off, and we find ourselves in another context. [f the svstem we are working
with could support also this human activity it would be easier to learn and operate.
Thiv means that the system has to be modeless to the user. A consistent user interface
cun help the user overcome some of the probiems he she meets when being exposed to
1 new nteractive svstem, or a new application within an already known interactive

wwatem. The svstem should let the user be in complete control throughout the session,

1nd otfer the user the structural view he she wants to use.

, F. SUMMARY OF CHAPTER

. Today more and more people are exposed to computers in their daily iife.
Therfore more computer resources must be spent on the interface between the user and
4O the computer svstem in order to reduce the learning problem for the average user.
}:‘ Our ability to solve large and complex problems is not onlv limited by ou
‘W programming languages, but also by the way we think about the problem. Modern
\ programmung practice, which emphasizes: structured programming, information hiding,
data abstracuon and top down design, can help us use what we currently have to solve
;.-*'- problems we earlier could not handle.
e Currently we do not know how to put all available information together in order
' to produce the optimum interactive integrated computer system. The user interface
iy must be as natural as possible for the human user.

»
Lad
>

o~ iy
NN

ﬁ
I'f

h)

'EaMd

.. L - - .A_" _'." ,~".~' _" . . “. - R R Ve u .'_.‘.,-.\._ . - ’_..' ‘..."...’
" Tt T, . .] N - P - o Ce T a®® a™ '.-.v-_ - ', . '. e - ‘e
*-u_-.-:h..m:x R O SN Y A ITY-UY U PTGV IR S S .-A.A‘r_,z"j

o PR TR YT YT Ty Y
”.U

WMYTWY VIR W7 W7 wme - - =

IV. DIFFERENCES BETWEEN LANGUAGES

A. PROCEDURAL VERSUS NONPROCEDURAL

The termunology and names used in computer science are not alwavs clearly
Jefined and nonambigous; this is true for procedural and nonprocedural programming
languages also. In this thesis the nonprocedural languages are the ones that emphazise
the features that let the programmer concentrate on “what” he she wants the program
to do. wnstead of spending time and effort to tell it "how” to do it [Ref. 3: p. 499]. The
separation of the logic components and the control components within the language is
also important to nonprocedural languages [Ref. 15: p. 424-436]. The terms procedural
and nonprocedural are relative terms, and many computer scientists would say “more
procedural” and “less procedural” instead.

In logic programming languages like Prolog, the goal directed use of Horn
clauses lets the programmer express the facts, and removes the "how” part of the
problem. Prolog does have control features built in that the programmer can use, such
as the “cut” predicate. Prolog will be covered in more detail later.

Object oriented programming languages are in this thesis classified as
nonprocedural programming languages. This claim will be defended later in the thesis.
The discussion is more on programming style than the programming languages
themselves because it is possible to program in a procedural style in a nonprocedural
programming language (i.e. Smalltalk). In a conventional procedural language the
programs are active and the data elements are passive. The program elements act on
the data elements. In an object oriented programming language, like Smalltalk, the
data elements are active and respond to messages that make them act on themselves.
Mavbe they modify themselves. or maybe modify or return other objects. Object
oriented languages will be covered in more detail later.

The control structure of procedural languages determines the order in which
actions take place within the program. The statements within the program must be

executed in the specified order to ensure correctness. This implies a very close

relationship between the control structures and the actual logic of the program.

Theoretically all programming languages are equally powerful because thev all build on
machine code, and they all can represent a Turing machine. For human beings this
seems not to be true, but this is only because the programming languages do not
equally well support the way people think, and often different languages are

inappropriately called “less powerful” than some other language.

B. PROCEDURAL LANGUAGES

1. Historical Background

Traditional programming languages do not really offer the programmer a high
level of abstraction, but rely on a “word at a time” programming style [Ref. 4: p. 404].
The von Neumann architecture of the computer system, and the sequential nature of
the traditional programming languages place limitations upon the level of abstraction
the ianguage designer can make available to the programmer. Programming has
proved to be much easier if a specialized language, for building similar applications, is
available to the programmer. The language supplies appropriate abstractions for the
application domain, and a programmer can simply select and compose these high level
constructs to build an application. The primitive constructs in the language are then
application level constructs. These specialized languages can be successful in a
specialized problem domain, but are generally less useful for other applications, and
therefore these application modules are difficult to reuse. For a programming language
to take advantage of both specialization and generality, it is possible to build the
specialized language upon a more general base language, which must be extensible.

Special languages like the svmbolic language APL can be very compact, with
very high semantic power. If the same program were produced with Pascal, a much
larger program (in number of codelines) would be the resuit. All languages have the
same theoretical power, and therefore the same problem can be solved in all the
prcgrammung languages. APL is less procedural than Pascal, less has to be said about
‘how” and this makes APL more compact.

The evolution of these languages, and especially the effort to provide more
semantic power, has resulted in the development of Ada. This verv large and complex
:anguage provides increased semantic power (higher abstraction) at the cost of

simpicity, clarity of understanding, and maybe the programmer’s mastery of his her

33

- . . R R o TN Y AV Sy
J‘ ~ _1‘,", ',.. :_\ ‘.N’n.:’-.’_ e '/‘\'-' ’t.-'n -.. .‘..-.‘_-\'A,,* (L._.--'\ ~\- Y"n.‘:..\ o < .‘.\‘*J W
~ o “ ¥ " e RN
A IS WY T SO AR T

A A" e 85 At Ara oo Sas Sl EheRin Aln SR AN

- oy
mm, o o o an fad fad i 2t oo Aok A Aok felb kil
~

hat 3

LY

! tools [Ref. 16]. Lisp is a language with a long history, and is very popular in research
\'

f-\ and development communities because evervthing is treated as lists. Therefore it is
v, easy to modify and extend to suit special requirements. The programmer is also in this

case responsible for the control structure of the program.

2. How do we Cope with the Complexity of Programming?

The complexity of programming increases dramatically with the size of the
program, because the possible number of interactions between the modules that make
up the program increases so enormously. How can we deal with this problem? What
has worked best in dealing with unmastered complexity in the past is a combination of
the following {Ref. 17: p. 8}

1. Learning from analogous situations outside the present situation.

2. Learning how people think and combine that thinking with facts and

preconceptions to determine actions.

Traditionally courses in computer programming teach you to think like a computer
when designing a program. This view of programming does not support information
hiding. which 1s one of the critical ideas in "modern programming practice.” In
procedural languages the programmer is responsivle for the control structure of the
program. and this might be the reason for “think like a computer” programming. Ada
1s an example of a language that is designed to incorporate the new programming
ideas, put still allows the programmer think like a computer if he'she wants to.

Our abilitv to grasp a complex problem is controlled by short and lcng term
memory. Short term memory is a workspace of limited capacity that holds and
processes those items of information occupyving one’s attention. The capacity of short-
term memory 1s according to Miller [Ref. 18] seven plus or minus two chunks. A chunk
1s a single symbol or a group that has a single meaning, i.e. telephone number. piece of

code etc. As programmers mature they observe more algorithmic patterns and build

larger chunks. The scope of the concepts that the programmers have been able to build
into chunks provides one indication of their programming ability. and it is rather easy i

10 measure.

3. ADA an Example of an [mperative Language
Imperative languages depend heavily on an assignment statement and a
changeable memory for accomplishing a programming task {Ref. 3: p. 344]. Most of

these languages are basically a collection of mechanisms for routing control from one

dssignment statement to another assignment statement.

3y

R -
TP AENEAEN

e T

m-|1“'5'~'~m~HM'“ B b Al aahdiee A At
" he e b -4 b cAb o Al —ade Sl e b b ML aad

The United States Department of Defence (DoD) initiated the development of
Ada rfor the purpose of large computer programs to be used in embedded computer
svstems. Ada 1s a rich and complicated language, but no subset is allowed bv DoD.
Since Ada is designed as an integrated. unified language it is difficult to remove
teatures without disturbing the unity of the remainder of the language. The language
supperts ‘modern programming practice,” and is a block structured language suitable
tor general purpose programming. Even if Ada has taken many ideas from Pascal, it is
not Pascal, and the design styvle of programs will be very different. Pascal is a language
tor single, independent programs. while Ada is a language for designing and creating
large software systems. It is designed to heip create programs bv piecing together
standard program units from an Ada librarv. Information hiding is supported bv
medularization (package), and this helps simplify readability, maintenance, and
enhancements. Abstraction both for data and control is achieved with the features in
Ada.

The dependencies among program units are explicit in Ada source code. The
structure of an Ada system is not dispersed among the source code, a run time
executive. and auxulary svstem generation tools. The structure is completelv defired by
the source code. The Ada compiler ensures that units are compiled in a correct order.
and that an executable svstem is configured only from units that are up to date.

Some have expressed concern about Ada, that it may be too large for the
average programmer to learn completely, and that the programmer therefore will lose
mastery of his her working tool. Hoare in his 1980 Turing Award Lecture was critical
o! the size and complex:ty of Ada. He meant that the language contained too many
features that made 1t complicated to use effectivelv. Much of the complexity comes
frcm the wide variety of features to handle the same problem. It is not like Lisp where
evervthing is a list, even the program itself, or like Smalltalk where evervthing is an
object. The complexity of the features in Ada may make it more complicated to build

user !riendly interactive integrated programming environments.

4. Pure LISP an Example of an Applicative Language
In an applicative language the central idea is function application. that 1s.
applving a function to its argument ([Ref 3:p. 345, Within an applicative
programmung language, functions may be defined explicitly, conditionally, recursively,

or as the composition cf other functions. The main point is that these functions

40

L A et At B T WL SN
R T LI A S S S I
e e A o At i B B A Eon B e T B St B e Bk ad AL

o % T T e
o e o 2 s e A

ey Mg s dan gas Soc dav b LAl ah Aad A ARl

operate only on data {numbers, characters etc.). Functions that take other functions as
arguments provide a higher level of abstraction.

Lisp 1s one of the oldest languages around. second only to Fortran. It was
developed in the late 1950s out of a need for artficial intelligence programmung. In this
kind of application the interrelationship of data and information must be represented.

The resuit is that the pointer, and in particular linked list structures are natural data

¢
.I
>
@
\
N
N
4
~
N
i
K
v
h.
L.

structuring methods [Ref. 3: p. 341]. Standard Lisp is not a pure applicative language
since it, among other things, has an assignment operation: “setq.” To get a pure
applicative ianguage, a subset of Lisp can be used, namely, Lisp without “setg.”
‘rplaca,” and “rplacd,” but also with “eq” restricted to atoms.

An applicative subset of Lisp encourages higher levels of abstractions than
conventional Lisp, because the assignments are hidden from the user. The assignments
mav well exist on a lower level, but thev are hidden from the higher levels of
abstractions. An applicative programming language makes it easier to integrate
different tools into a svstem because the problem of side effects is avoided.
MacLeanan [Ref. 19], among others, have suggested combination of features from
value criented (applicative) programnung and object oriented programmung in order to
build interactive integrated programming environments.

Lisp is a symbol manipulation language, where the fundamental objects are
called atoms. Groups of atoms form lists. An atom is a sequence of alphanumenc
characters: a list is a sequence of atoms and other lists, enclosed in parentheses. Lists
themselves can be grouped together to form higher levels lists. The ability to form
hierarchical groups (e.g. lists of lists) is of fundamental importance to the language
[Ref. 20: p. 2]. Atoms and lists collectively are called symbolic expressions. Svmbaol
man:pulation is often called list processing.

Lisp represents both the data and programs by the use of lists. This uniform
wav 10 represent everything in a program makes Lisp ideally suited for interactive
integrated programming environments, because everything can be treated as lists. A
svmbolic manipulation program uses symbolic expressions to remember and work with
data and procedures.

Lisp and Smalltalk both perform dynamic type checking as opposed to the
static tvpe checking in Pascal and Ada. Both Lisp and Smalltalk will be discussed
mere in detail later. especiallv how theyv are used in interactive integrated programaung
environments. We will see that dvnamic binding todayv makes it easier to build and

maintain interactive integrated pProgrammung environments.

41

k.
K
The sample program Tower-Of-Hanoi in Appendix C is written n Lisp
[Ref. 20: p. 88-90].
P C. NONPROCEDURAL LANGUAGES

1. Historical Background

A pure nonprocedural programming language would be one in which the
a programmer only had to state what was to be accomplished, and leave it to the
computer svstem to determine how it was to be accomplished. Normally this kind of
: programming 1s achieved using a higher level of abstraction that removes the user from
the trivial part of specifving control flow etc. Prolog, which stands for “programming
in logic,” was Jdeveloped in France [Refl 3: p. 500] in 1972. Since then a number of
interpreters and compilers have been developed for a number of different computer
svstems. Prolog is becoming more and more popular for logic programmung, and some
even think it will replace Lisp for artificial intelligence programming in the long run. [t
was chosen as the language the Japanese will use on their 3'th generation
¥ supercomputers. Although there are many logic programming languages, this thesis
3 will investigate Prolog since it is a typical, and well known, representative of logic

programming languages. :

' Object oriented languages like Smalltalk are another typical but less known.
2 example of nonprocedural languages. Many computer scientists believe that object
criented programming is the only possible way to go if we want a reliable
impiementation of a very large and complicated software system (like SDI). This is
mainly because we, at the moment, are not able to perform a convincing test of
conventicnal written programs. Exhaustive testing is not possible due to the enormous
number of possible interactions between moduies. The conly way today to prove
correctaess, i.e. the absence of bugs in the program, 1s by exhaustive testing. [n object
oriented programming the testing problem is reduced to testing the objects. Evervthing
:s treated as objects, it is therefore easy to add to or change a program. The class

structure of an object oriented language. like Smalltalk, prevents objects from making

100 marnv assumptions about the internal behavior of other objects.

Rl Badh SAdl WA SN TN
mmmm.r.- i ae aiaa aa hod A h b dd Aok dek anbohatl

Prolog an Example of Logic Oriented Language

Prolog builds on rirst order predicate logic [Ref 2I:p. 14]. Computer
languages try to do things. but logic just savs that certain things are true or false
Prolog looks like logic. That 1s, its svntax is that of logic, but the semantics are
Jifferent. [n logic programmuing, programs are expressed in the form of propositions
that assert the existence of the desired result. The theorem prover then must construct
the Jesired result in order to prove its existence. Thus a side effect of the proof
produces the wanted resuit.

Programmung in Prolog is different in style from most programming in other
languages, and 1t 1s called declarative programming. The main 1dea is to write programs
as fots of small modular pieces. The programmer’s emphasis iS cn writing correct
nieces, and not on figuring out how the pieces will go together. The emphasis is on
whether each piece makes sense by itseif and whether it 1s logically correct. not on
what 1t does. Prolog makes the “closed world assumption” or “lack of knowledge”
:nference {Ref. 21: p. 71]. That is, if yvou cannot prove something is true, assume It is
false.

Prolog 1s not a pure nonprocedural language because 1t has built in some
special features. The “cut” predicate for example cannot be interpreted declaratively.
and has no argument. It always succeeds when vou first encounter it. As a side etfect it
throws away backtracking information to prevent normal Prolog backtracking. A cut
predicate at the end of a rule means vou want to solve the problem only once.

As opposed to Prolog, pure logic programming allows separation of logic and
control. Because the clauses of a logic program have no effect upon the correctness of
the program. the meaning of the program is tied to the logical reiationship of the
program clauses, not to the order in which thev are executed [Ref. 3]. The programmer
can therefore focus on the details of the logic component when he she 1s concerned

with program correctness. After a correct program has been established. the

programmer can concentrate on the control component for efficiency considerations.
Appendix B shows a small sample program written in Prolog where alsc the cut
predicate is used.

A frequent danger in Prolog programming is infinite loops. Tvpically a rule
calls izself forever, or a set of rules call one another in a cvcle. This happens more
often in Prolog than in other languages because of the emphasis on recursion and

complicated backtracking [Ref. 21: p. 43]. Artificial intelligence programs tend to be

-
43

-

.

< - B N P R S -.-., " i" .

P I - y P T LA \\\\\ oV

'{\' - S IRSATIR - (:‘,A‘L‘A__-(_g;(L-(-q-n-;-f_i}l" -r\.r n_f...,...

§

| m e TTRE T v e mh e e e T W
'. «

-
v

iarge. complicated, and very hard to debug. A problem suitable for artificial intell:igence
techniques must be sufficiently well defined to have clear cniteria for success and
fatiure. Otherwise it is impossible to tell if it 1s working or not. Prolog generaliv has
oroblems when processing time, storage space and calculation accuracy are critical. In
addit.on most peopie find it difficult to read and understand large Prolog applications.
Pure logic programming has some disadvantages that resuit from the abscnce
cf state changes. Theretore 1t s difficult to write programs for those apphcations for
which temporal change is an essential element. Examples are; databases, grapnics, real
ume programs, interactive svstems and cperating systems. Many of the components in
an interactive programming environments are of the above type: editors, debuggers,
version control, management svstems etc. But Prolog, as opposed to pure logic
programmung, has “assert” and “retract” to take care of state changes, but this is not
encugh to make Prolog well suited for implementing interactive integrated

programrung environments.

3. Object Oriented Languages

What 1s meant by “object oriented” is still rather vague, and a lot of confusion
seems o exist even today among computer scientists. Some call Lisp an object
oriented language. others claim that Ada is object oriented [Ref. 22: p. 11-19]. There is
a trend to give existing programming languages an extension that includes object
criented features but the question is if this makes them real object oriented languages.
An object oriented programming language is one in which the fundamental processing
naradigm 1s simulation. In such a language one often sends a message to an object,
rather than the more traditional approach of calling an active procedure to operate on
some passive data that is passed to it. Object oriented programming qualitatively
enhances the design, creation and maintainability of software svstems. Much of this
power derives {rom modularity, and the fact that absolutely evervthing can be handled
as objects. The message is not a distinguishing factor in object oriented programming

nguages, but is often incorrectly used to describe them.
The object oriented process is closer to high level application programming.
arnd further from the machine level, than the traditional approach. The object oriented
pproach allow design and coding to be done at the same time. There mayv be an
object in the library that nearly fits the requirements, and vou can start the coding with
this object. Instead of creating new modules out of smaller subparts, vou create new

chects by mcdxf_\'mg existing objects. This means that instead of piecing together. vou

44

- .~ d PR -
.r -"-Pm {/J.-f -'z-'.'_ﬂ_,__..
St NN NI

e -
ettt e e i A LAt diad iadd
A

- PRI ..._4\-"‘-_.’_--$<‘_
atp At AT N, * ”
P DS QUGN WL S (S

carve and shape an existing object. This kind of design code technique seem:, for muany,
1o be more naturai and intutiive than the more traditional design code process.

Object criented programmung languages as they are defined in this thesis are
nenprecedural because the programmers Jo less of the "how” than in more trad:t.onal
progrommung languages. The classification 1s based on the stvle of programming
Secatse ohiect onented programmung languages can be ‘pussused’, e used in o4
procedural manner.

Modulanityv is at the moment probablv the best techrigque available fer
man2ging the compleaity found in sottware svstems. This means that certain tvpes of
compiexity are stricily contained within boundarnes called moduie :nterfuces. Munv
programnung language environments inciude features that support modujanty, bu
oniv 2bove the level of the procedure cali. The object oriented approach inccrporates
modularity at the most basic level of a software svstem.

A restaurant can ne used as an example to demonstrate the difference hetween
the cbject oriented and the traditional approach. In an object criented restaurant, vou
order vour food by sending the chef a message (via the waiter). The chet 15 assumed to
have the prerequisite knowledge to take the order from there and prepare the food. but
vou mav also give the chel a specific recipe if vou want to. [n a procedure onented
restaurans, vou must send the recipe to the chef. This means that vou must know
something about cooking i order to get a meal, and may even need to know
semething about the chefl The procedure specification in the procedure ca.l
establishment puts coastraints on the chef. Suppose, unknown to the patron, the chef
had learned a better way to prepare the meal. Only in the object oriented restaurant
could the new skills of the chef really be exploited to the benefit of evervone.

What are the munimum requirements to be an object oriented language? What
features must be supported? This thesis will try to show that the language must
support the following four features to be a real object oriented pregrammung language:

l. Information hiding.
2. Data abstraction.
3. Dynamic binding.
4. Inheritance hierarchy.
Especiailv the last feature, inheritance hierarchv, reduces the number of languages that
can be cailed object oriented. This feature also suggest that this thesis support the

wmuaiation paradigm, mere than just message passing, as the most impertant

v Vet T ..'.""\' PRI _.’ W e T N T

~ :_ A"‘.
. A -_-_.‘r-.-.-.-'_-.)'. e e T T e DRI :
':'n;‘a-i'}::')':.‘\\ Al R VR AT A I T VNI . Py I ciedhdiadndiaiatuiainidindeiy

descripton of object onented languages. This definitton of object criented
programumung languages excludes, ameng others, the following languages: Ada supports
packages (untyped data abstraction) but not inhenitance, CLU supports clusters (v ped
Jdata abstraction) but not inheritance, standard Lisp does not support informaticn
Aiding, and ISO Pascal does not support information hiding.

There are other concepts in object onented programming that are not central
ro the buasic idea of object oriented programumng. One is automatic storage
management. which 1s not necessary, but 1s very useful when implemented. Automat:c
storage management techniques such as garbage collection and reference counting let
programmers ignore details concerning the reiease of an cbject’'s storage 1n memory.
Tvpically garbage collecticn in a real ume system is solved by one of the foliowing
methods:

l. Sweep garbage collectuon.

2. Separate memory management processor.

3. Paraljel

<. Spiit virtual memory in two; cost is only one bit in address.
These techniques make the application source code cleaner, and the overail software
svstem more reliable. Another concept i1s the virtual memory svstem needed (0 take -
advantage of all the classes (objects) created. Standard Smalltalk does not have a
virttal memory capability, but this problem does not exist in most of the newer .
‘mpiementations of object oriented languages. The standard Smalltalk-S0's object
rormat allow a simple resident implementation, but at the same time faciitate easy
extensiens to virtual memory. In the future it may be feasible to swap objects instead
of pages in such a system. LOOM [Ref 23:p. 231-270] 1s an example cf an
expenmental single user virtual memory svstem that swaps objects and operates

witheut assistance from the programmer.

Cd

.
-
»
-

D. SUMMARY OF THE CHAPTER

- s e e
P

The programmung !anguages can in general be classified as procedural or

)

nonprccedural. In procedural programming languages the programmer 1§ responsible

for :he control structure of the program, while in nonprocedural programnung

.anguages the programmer concentrate on what he she wants the program 10 J0

46

B e TP P

TSI IV RS

- . - " '.". --‘." DY
A

V-a vy T T T T TY LA AL e Ale Ahh ot Sid add ade Shd b aibh abd - ada- amhb - BA s il ad - he el g ad aac gon Ses)
I

e .

N instead of how to do it. ' ' "

: $ | o Ada and Lisp are examples of procedural programrur.g
«anguages, while Prolog and Smallt : ; [:

;‘ g alk are examples of nonprocedural prograinnung

3 languages. Theoreticallv all programmung languages are equal
epresent the Turing machine.

v poweriul. and can

P A

R
{".I(. LM

LS

0
,J.' -

£

.
-
-

» .
.

. |
. -'."1'

e
a3
»
e

5 ‘.'f'J

a4 s

A
LNTALh

>
-
nl
v
v
.

37

".."ﬁ .-—.'-.I" .(! ""m}.'-f

[-
N .L..\.s X AL h_h}dln Fhlﬂ..n.

o
A.J_A\\

N Al ala aod Ana Aot el Aed gat Baied rad-dad g L e shas Mok Sai o das dab S Lot i d At ol el - -

P
A
:
V. WHAT IS AN OBJECT ORIENTED LANGUAGE?
q
:: A. HOW TO DESCRIBE AN OBJECT ORIENTED LANGUAGE? -
. | General Description
: Mcest people view processing inan object oriented system. ke Smualitalk, as
: wmalation 'Refs. [9.24]. The programumung language objects correspend to real worid
- chrects, and the manipulation of these objects are simulated by sending messuges 1o the
rogrammeng language objects. Simwulation s partcularly appropriate to systems that
p must Jeal explicitlv with the passage ot ume and the aiterations of objects through
N wme. I'xamples of these svstems are: interactive systems, graphics svstems, operating
‘ svstemss, editors, file svsiems, version control systems and database svstems. Smailtalk
. and Simula are bu.it upon the framework of a conventicnal procedural fancuage. and
:: this framework Joes not take fuli advantage of the simulation paradigm. Scme peopie
'_:.: reel the message sending 18 the kev to describe object oriented languages [Re!. 231 but
N *his thesis shews that this is not enough because the four features described 1 the (ust
¢hapter are ot guaranteed by message sending alone.
M Mant people who have no background in how computers work tind e tded
x 20 otect oniented svstems quite rnatural. This s probabiy cuused by the close
5 corraspondence between thinking about computer objects and the real world chredts
. Otwen the obhject oniented program 1s derivable from the real world s<ituation v s
o mmtended to model. In Smalltalk they concentrated on the visual impact of riomapped
;:: righ resoluton graphics, on highly interactive user interfaces. and on increased suppert
y ‘or the user in the design and programmung role. The enhancement to the ‘visua
' .ntertuce covers the basic concepts of windows, menus, and scrolibars. In addinien the
jﬁl' mterasuon between the user and the svstem emphasized the use of a pointng devie
. -mouse) rather than kevboard for selecting objects, and operations on objects. The
‘_ rasie 1dea abeut how to create a software svstem in an object oriented tashion comes
‘ mere naturelly to those without a preconception about the nature o sottware svstems
JRel Zonplo TG
. I
Ed
N 48
\-.
N
;

.

L4

PRI TR L B I I -‘~‘,",".-'\~".'>,
5-'.',{_‘.1"'-'\ N N AT T e AT

‘.\;._\

Ohiect orented programmung s a technique well suited for organizing verv
arge and complex programs. [t maxes 1t practical with current available techncicgy <0
Jeal witn predlems that otherwise would be imposably complex. An object onented

arcgram eonnists of aoser of ohjects and a set of operations on these objects. The

“the operations are distrnibuted among the various chiects that thev ca:
Sperate onLote the svstem (s not monolitic. At the same time, the defimitions of the
onveets are disimbuted among the vanious facets of thewr behavior [Ref. 27 p. 1], The
Jara vaiues inside an eohject can represent the properties and relations in which that

Shect partapates, and the behavior of the programming language object can medel

L4

the rehuvior of the corresponding real world object. The main paradigm of object

4
A
(27
.
o
{-
e
=
]
1]
[N
3
5

ung supported n this thesis s simulation, which 1s quite natural

vhen vou Know that many of the ideas in ctvect onented languages are taken rom

-
M

Simuia Simuic = simuianiony (Refl 3 p. <64]. The creators of Smalltalk at Xerox sce
"he language charactenized by the following three principal attributes {Ref. 23: p. 10}:

I, Duta stored as objects which are automaticaily deallocated.
ected oy osending messages to objects.

Y Behavior of ohiects deseribed 1n lasses.
An ohregt crniented junguage 15 organized around objects. These objects are places for
Juta sterage, Lre Pascal recerds. In addition they have methods, which are routines
*hat operate on the orect's data. [n object onented nrogramming vou Jecide on vour
ture st and then afterwards wou decide what routines vou need 10 operaie
coone Jata ostruciures. You can do this inoall languages, but in obiect criented
AU 2es VoL wan group the Jata structures and the routines together into objects,
Anocmecr os hixe a hittle program, that dees its task in an independent manner. Each
~zrgram Knews how to Je s cask, hike the chef in the example descnibed euarier

sws how o prepare the meal vou are orderning.

B

2 Differences between Object and Procedure Oriented Programming

)

The restaurant chef example menuored earlier gives a good feel for the

<

Jiderence, but the felliowing exampies wil demonstrate more of the organizationdl

rence between the two tvnes of progrutiutung we are discussing, precedure orented

dand ooect orniented. Most existing programs are procedure oniented, hut

nonprocedural lunguages hike Lotus 1-2-30 Focus, DBITL ete are now beconung meore

ind more imperiant inoour acrmal cob wituation. Many of these new applhcation

cmeclic, noprocedurtl anyuages, sacniiee eiceney tor a more aser riendly intertace
-

<. R T - . . oA
L T U

In a precedure oriented program the programs are organized around procedures and

functions. and the programmer decides what task needs to be done.

TABLE 1
EXAMPLE OF PROCEDURAL ORIENTED PROGRAMMING

st _memrer = RECORD
risianer = RECORD
siaden = RECORD
PROCEDURE Salarvtpersone))
perscne; = «tatl_member THEN calculate salarv this wayv

k. LbElF personel = pro:€ssor THEN calculate salart another way
E\D[LSEIF personel = student THEN calculate salary third way
PROCEDLU RE Exerciseipersonel)

i3 personel = xmt}" member THEN exercise at this ume

ELSEIE personel = prof€ssor THEXN exercise at another time
F\DFLSEIF DC"<O']€I = student THEN exercise vet another uime

TABLE 2
EXAMPLE OF OBJECT ORIENTED PROGRAMMING

s2afT member = OBJECT)

- PROCEDURE Salarv calculated this way
o PROCEDURE Exercise at this time
END
~rotesscr - = OBJECT

PROCEDURE Salary calculated another wayv
_ PROCEDURE Exercise at another time
END
student = OBJECT .
PROCEDURE Salary calculated third way

END PROCEDURE Exercise at vet another time

For the examples assume a program that operates a school, in our case operates on
statf members, professors and students. The program need to implement payvroll
(salarv) and physical fitness (exercise) for the staff member, professor and student. A
verv high level of pseudo code is used in the following examples just to highlight the
interesting points. The examples are incomplete programs (i.e. the declaration part)
;ust intended as an 1llustration of the organizational difference between procedural and
object oriented programming. Bcth examples are supposed to solve the problem
wrthout anyv debate of which is the best methodology to use.

Tre diTerence beiween a procedure oriented program and an object oriented

nrogram is a matter of stvle. Both approaches can do exactly the same things, but cach

d soh 22 Vol oad ool Gall Sol Ball Shile thle JhinciERa i A

m---rr*-"*-v*-"t*"““v“

approach has advantages in certain programming areas. The advantages of object
oriented programming result from the simulation paradigm; in particular, they are well
suited for programs that deal with time, and changes of state in time.

There are several wayvs to look at the difference between object oriented
rrogramming and procedure oriented programrung [Ref. 28: p. 147]:

I. Code viewpoint, in terms of the program structure that is created in the
program. Each object that is created can be viewed as an independent entity in
the program. Each object operates on the data passing through it according to
its own buiit in rules. Changing the object’s methods means changes to the built
i rules.

!J

Data viewpoint, in terms of the data structures the object handles. Each object
not oniyv stores information (data), but also processes the data. 1.e. each of the
objects operates on the information within itself.

{42

Structural viewpoint, in terms of the resulting way to design code the program.
Instead of piecing together smaller moduies to larger ones. <vou
specialize modify existing objects.

B. TERMINOLOGY USED

’ 1. General Background
The term “object oriented programming” was first used to describe Smalltalk
crogramming environments developed at Xerox. Smalltalk took many of its most
important :deas, such as classes and objects, from a simulation ianguage called Simula

that was based on Algol-60, and designed in Norway in the 1960s. The two languages

are different in a number of ways. Simula-67 contains Algol-60 as a subset, and

supports: block structure, static (lexical) name binding. and compile time type

Q

checking. Smalltalk has none of these features; it is more in the stvle of Lisp with
uniform representation, dynamic binding, and run time type checking. In Smaiitalk the
Jdesigners combined the incremental program execution of Lisp with Simula’s class and
virtual concepts. Simula was designed from the beginning as both "a svstem
description language and a simulation programming language.” [Ref. 29: p. 12

This thesis will use object oriented programming concepts, termuinology and
characternistics from Xerox Palo Alto Research Center. The designers of Smaiitalk
dzcided to let evervthing in the system be an object. This was not only applied to the

Pasic datatj.‘j:es. but also extended to the state of the system: activation records,

._,‘.'. DR - ‘.»'._ T

[N
- - . - - .~
BT STy 5T .

3N el A - X
‘&1&' Y Lﬂ_"{'-n.‘(»_ l.. -'.. -f "\.'r J.'\..A. J\.' \'C‘\'L‘&. A -;_L...L._‘L-AA "- \-’A-". .“‘5‘{3‘ s SNEY

W'""Fm“““"“ m!vﬂl"ﬁ("‘.—‘ L 2t S soh 80d 2ok snd Bed Sod Aad Sad Sah A Atadl A A il Bl RSt A -

[
fo

instructions, and program counters all followed a specified format. The return address
tor every subroutine call and even the program counter is an integer offset, not an
absolute address. Evervthing was constrained by this design, even the most frequently
accessed of all data, i.e the instructions. Smalltalk is defined in terms of an interpreter
tor a virtual machine with a set of instructions. “Smalltalk-80 : The Language and [ts
Impiementation,” by Adele Goldberg and David Robson plays an important role in
thus picture, and is a de facto standard when it comes to concepts and termunclogy for
chrect oriented programming. The description of Smalltalk in this thesis builds on
work done by Goldberg and Robson. See appendix A for terminology lor
Smalitaik-80.

The Smalltalk-80 programming svstem 1s divided into two major components;
the Virtual Machine and the Virtual Image. Protection of the software is done by
cepvrighting the Virtual Image [Ref. 23: p. 4]. The modular design of Smalitalk makes
this approach for protection feasible. The virtual machine for a particular computer
ststem consists of an interpreter, a storage manager, and primitives for handling the
input output devices. The virtual image is a large collection of objects that make up

Jescripuions of classes providing basic data structures, basic graphics and text, viewing

~

~d user interface support, compiler, decompiler, and debugger. Because Smalltaik 1-
defined in terms of an interpreter, the virtual machine is easy to implement. All
svstems running the Smalltalk-80 programming svstemn would therefore lock the same
1o the user; each system supports bitmapped graphics and a pointing device. The
research effort in Smailltalk environments focuses on increasing the support that the
computer svsiem can provide to users without a background in computers. The
research is centered on the visual impact of bitmapped graphics. on highly interactive
user interfaces, and on increased flexibility in terms of user programmability.

These design decisions show that the human interface is given priority over
hardware considerations. Therefore Smalltalk executes rather siow due to, among
cthers, the following reasons:

I, Smalitalk is defined in terms of an interpreter, and interpreters are slow.
2. Smalltalk is uniformly object oriented and this implies a large number of
messages (procedure calls), which are time consuming.

3. Smalltalk creates and destrovs a large number of objects. The memorv
munagement svstermn therefore has a lot to do. 4

There are five major concepts in Smalltalk: objects, messages. classes,

instances, and methods [Ref. 30: p. 6-16]. The Smalltalk language is based on these

tn
tJ

- o et AU T .. . -... A‘. ." ." q" " \- "‘ ‘-.."I._
e A A e e e e L e
R LI IY P0 O PRI PR T Vil ¥ U G eV 50 | »

"4 a
H %

45 s e

v T "W W w s v s s T

five consistent abstractions. System components are represented by objects. Objects
are instances of classes. Objects interact by sending messages. Messages cause methods
10 be executed. Like Lisp. Smalltalk seeks to provide uniform treatment of diferent
xinds of information: text, graphics, svmbols, and numbers. Bv packaging the behavior
of each form of the information with the actual data, the information can he shared

petween programs without changing representation.

2. Objects
[nstead of two tvpes of entitv that represent information and its manipulation
independently, as in procedure onented languages, an object oriented language like
Smalltalk has a single tvpe of entity, the object that represents both. In a

1

programming svstem that is uniformly object oriented, like Smalitalk, a class is an
object 1tself.

An object is an instance of a class, and represents a component of an object
ortented svstem. The objects represent the components of a software svsiem. Objects
may have a number of relationships with other objects. “One object may be part of
ancther obrect, or (as in an operating svstem) the owner of another object.”
[Ref. 31: p. 6] An object consists of some private memory and a set of operations. The
nature of the operation of an object depends on the tvpe of component it represents.
That is, objects representing numbers compute arithmetic functions, etc. “At any point
i tme an object has a state, which is the sum total of its relationships with all other
objects in the system.” “In svstems like Smalltalk the instance variables deternune the
state of an object and the methods defined in the object’s class determine the object’s
behavior in ume.” [Ref 3l:p. 6] An object has the following characteristics
[Ref 31 p. 671

l. "Objects are temporal, i.e. they exist in time.”

2. "Objects are mutable, and have a state.”
3. "Objects can be created and destroved.”
4. "Objects are particular, and can be shared.”

The first job for the designer programmer i1s to choose what he she wants to
be the cbjects in the problem he she is trving to solve. Objects can be anyvthing,
examples are: numbers, programs, character strings, compilers, computational

precesses, text editors.

ol
AR

4

G

E 3. Messages

X "A message 15 a request for an object to carrv out one of the operations frocm
its cwn set of operations.” [Ref 30: p. 6] The message specifies which operation it
wants, but not how the operation should be carried out. The object to which the

; message was sent Jetermines how to perform the requested operation. Messages insure

. the modulanv of the svstem by specifving the type of operation desired, but not how
to perform the operation. An object's interface 1s the set of messages to which the
object can respond. Interaction with an object goes through 1its interface, and its

, private memory can only be manipulated by its own operations. Messages are the only

wav to invoke an object’s operations. These properties provide securitv since the

implementatiocn of an object cannot depend on the internal details of other objects,

onlv on the message to which it responds. The essential point is that the

- designer programmer decides on the data structure first, and then which routines are to

. cperate on these data structures. An object’s private properties are a set of instance

y artables that make up its private memory and a set of methods to describe how to
(| carry cut 1ts operatons.

In the Smalltalk-80 programming system, objects and messages are used 1o
:mplement the entire programming environment. The designer programmer determines

which Kind of objects should be descrived, and which message names provide a usefui

vocabulary of interaction among these objects. This is an acquired design skil, and 1t ’
N Takes ume to master. Messages represent the interaction between the components of

Smailtalz-80: the arithmetic, control structure, file creation, text manipulation,
compilation, and application uses [Ref. 30: p. 40]. The messages make an object’s
funcuonality available to other objects, while keeping the object’s implementation
& hidden. The entire programming system becomes accessible as soon as the cbiects and
. the messages are understood.

4. Classes

In Smalitalk, vou describe a new type of object before creating it. When vou
: are Jone, the description also works for a whole class of objects. Such an object
: Jdescription 1s called a class. Anv object created from the description is called an

" :nstarce of the class. A class includes a method for cach type of operation 1ts instances

S can perform "Ref. 30: p. 9.

mgvve TR TR T RSO

Wm,www 2 aue aagn dis fhe A3 B ieAlle-die dhe ol

“The class describes the implementation of a set of objects that all represent
the same kind of system component.” [Ref. 30: p. 8] In other words a class is just a
name for a particular kind of object. The individual class describes the form of i%s
instances, private memory, and how they carryv out their operations. The class provides
all the information necessary to construct and use objects of a particular kind.

:ncluding the storage for methods. [Ref 3: p. 40]

Instances
An instance is one of the individual obiects described by a class. Each instance
has one class, but one class may have multiple instances. Each instance has storage
allocated to maintain its own state, and the state is referenced bv instance variabies.
ach object has its own set of instance variables. A class includes a method for each
tvpe of operation its instances can perform. In Smallialk the attributes of an object
are represented by instance variables, whose values are themselves objects. All
instances of a class represent the same kind of system component. This means
(Refl 30: p. 36]:
1. All instances of a class respond to the same set of methods.

2. All instances of a class have the same number of named instance varables and

use the same names to refer to them.

LI

An object can have indexed instance variables only if all instances of its class
can have indexed instance variables.

6. Methods

A method in a class tells how to carry out the operation requested by a

particuiar type of message. When the special type of message is sent to anv instance cf
the ciass. the method is executed. The class includes a method for each tvpe of
operation its instances can perform. The object’'s methods can access the objeci’s own
instance variable, but not those of any other objects. Methods are simply procecures cr
subroutines that are invoked by sending messages to a class instance.

A small subset of the methods in Smalltalk-80 are not expressed 1n the
Smalltalk-80 programming language [Ref. 30: p. 9]. These are the primutive methods:
inev are built into the virtual machine. and cannot be changed bv the application
programmer. The prinutives are invoked with messages exactly like other methods. The
purpose of the primitive methods 1s to allow access to the underlving hardware and

viriual machine structure.

‘e
I

" 4 R L N PTLIPR T S L TR R Oy R _, y
J‘M-I‘NJ"-’“'-'...-.J'_J_ .P. AN A s B R A AT

AT G RN ..\-"
m.f‘._(‘ -l \" "' _'-" \'.'4)"5_‘!“!_',‘5_‘ O " .H"J‘\ y.!‘fn)r

[Fuible ata mse 2 Rinda-aid add adeada - olie 0 sh o bbb s ot abi i afl SR ali

A

C. INFORMATION HIDING

¥

o

1. Definition

LA 'Y‘
OV

[nformartion hiding is to hide the data structure used in one module from the

rest of the program, ie. prevent access to the data structure from outside of the

1

module. Information hiding is formaiized by the following two principles [Ref. 3: p.
92

tJ

l. "Ore must provide the intended user with all the information needed to use the
module correctly and nothing more.”

to

“One must provide the implementor with all the information needed to complete
<he module and nothing more.”

Modularization is the division of a program into a number of independent modu.es.
Each moduie is itke a small program that can be implemented independentlyv of the
other modules. The result of each design decision can be hidden in the corresponding
moduie. ¥ this decision is later changed only that module has to be modified. This 1s
called information hiding {Ref. 32}

Modularization can also be viewed as taking a large complex program and
spliziing it into several little programs using the following principles [Ref. 33]:

1. Cohesion; each module should perform a single complete logical function.

2. Coupiing: each module should have access to only those data elements that 1t
needs to complete the assigned task (the "need to know™ factor).

imis 1s much like the mulitary methodology of “divide and conquer.” Programs can

tnen be designed as a series of linked, single functional logical modules.

2. Information Hiding in Object Oriented Languages

“In simulation it is often necessary to implement an object in terms of lower
‘evel obects, To preserve the integrity of the simulation it is important to Jisunguish
these objects and relationships that are part of the simulation from the objects and
relatonships that are not part of it.” This distinction also facilitates “the modular
Jeccmposition of the system.” Smalltalk and Simula-67 both aliow objects to be used
:n the implementation of other objects. but thev do not enforce the boundary between
*hese levels of abstraction. Enforcement of boundaries have been implemented in more
recent object oriented languages, including recent Simula editions. [Ref. 19: p. 12]

Informaticn hiding ensures reliability, testability, and modifiability of a

saftware svstem oy reducing the interdependencies between sofiware components. The

internal Jata structures and procedures can be changed without affecting the

o g w Lo aa an s sl ek Ask bath Chn
b

w Wy WLt

implenentation of cther modules when thie internal state varable of a module 1s net
directly accessed from the outside. Most modern programming languages suppor:
izrormacion hiding to some degree. The onlv important exception known to me is [SO
Pascal. which provides no way to declare static variabies within the sccpe of a
procadure. Standard Lisp does not suppert information hiding either, but newer
mmiplenientauons of the language do; they use something iike the ‘package” in Ada to
support this feature in Lisp. Smalitalk’s precgramming environment uses chiects and
messages 10 facilitate modular design. Also other languages use objects and mwessages

tor this purpose; Simula uses them for describing simulations, and Hydra uses them [o

-

describing operating svstem faciiities in a distributed svstem.

D. DATA ABSTRACTION

1. Definition

“Avoid requiring something to be stated more than once; factor out the
recurring pattern.” {Ref. 3:p. 12] People think and understand by means of
abstraction, and abstraction is the major technique for understanding, and inventing. of
compiex structures in the real world. An abstraction provides a simple view of a
siructure, and summarizes its interesting and important properties. Hoare [Ret. 10: p.
531 stated it lLke thiss “In the development of our understanding of complex
poenemena, the mest powerful tool available to human intellect is abstraction.” [ach
I the eiements of an abstraction itself can be an abstraction for detaiis at a lower (or
nigner: level. At a given level of abstraction the view must be simple or the abstraction
s nappropriate. The major 1dea is to use abstractions to make it easter for the human
peing to uncerstand a complex problem. Data abstraction is the ability to define a
tvpe by speafving the operations that are meaningful for it, without exposing the
representation of the type.

In general the introduction of an abstraction laver will reduce the efTiciency
ot tne algorithms. Optinuzed compilers can remove this problem, but in dvnanuc
ninding languages, like Lisp and Smalltalk. the added functionalitv means a significant

15ss i performance.

P S e e T A AT e e e, - '_.-'_'.'.-'
< ",_'.'Ah' A i e e e i b i bl M

., .

1

Fd

=

&

: PNV NS,

" WY TR TR T TR TN
L saa udosl o oma ona: ot an- e ses St el it Sk dek el iul 4 Hyerewvy TELTWLN . TR
Ty 9 o

2. Data Abstraction in Object Oriented Languages

According to our detinition of object oriented programming languages Pascal
and Ada are not object oriented because thev do not support all four features in the
detinizen. Data abstraction in object oriented programming languages are discussed in
reiation t0 Pascal and Ada in this section.

Some languages. like Pascal. allow the programmers to define new data types,
but the representation {e.g. array, record etc.) of the tvpe 1s not hidden from other
parts of the program. When the representation is exposed, the abstract propertes
cannot be assured. Given an object of a program defined type, other parts of the
program <an access the representation directlv and hence can violate the abstraction
properties. Object oriented programmung is also an abstraction mechanism. [n some
object oriented programming languages, like Smalltalk, objects that have a lot in
common are grouped together in one class. This i1s an abstraction, but also it shows
how data abstraction can be considered a way of using information hiding. Some
pecple [Ref. 22: p. [1-19] view the important features of object oriented languages as
information hiding and data abstraction. This definition would include Ada in object
ortented languages. Our definition of object oriented programming languages excludes
Ada, but because it is one of the newer procedural programming languages it 1s
studied. Ada includes abstractions for both control and data. The control abstractcn
inciudes procedures and functions, but also assignment statements, if statements, biock
statements, ete. [Ref 33:p. 9], Ada uses several features, operator overloading.
generic program units, and packages, to implement data abstraction. The dJata
absiraction in Ada is established at compile time.

In. for example, Smalltalk the internal structure can be hidden from other
cbjects. This data abstraction can be illustrated with the following example: Suppose a
arogram 18 written with the purpose of plaving chess, or as in this case restricted to
ncvement of the chess pieces. A Smalitalk program would invoke a methed
“move_to.” passing the destination square as a parameter. The point is that an
asnvignment statement is not used to modifv the data structure describing the chess
~12¢es’ positions on the board. The main advantage is that both the representation of
the chess pieces and the implementation of “move_to” can be changed without altering
the ¢ode in other objects that access them.

Dynam:c binding seems 1o be the onlv reasonable solution to the Zata

ansiraction prebliem if a more general reuse of code is wanted. [t Is possible to wrnite

58

L - NS L RS

., 2

T W

-'f.,f‘
£ 3

weRURe Ry R FRECREREOE T OT T T
L2 a4 A s A Al 8.2 SR o) ol
A 2 Aun b ad o dh Sl el i

general procedures that use variables and procedures supplied by the caller <

environment.

E. DYNAMIC BINDING

. Definition

‘With dvnamic binding the meaning of statements and expressions are
deternuned by the dvnamic structure of the computaiion evolving in time, that is at run
ume. With static binding the meaning of statements and expressions are determined by
the static structure of the program.” [Ref. 3: p. 119] In static scoping a procedure is
called in the environment of its definition, but in dynamic scoping a procedure is called
in the environment of its caller. Scoping rules apply uniformly to all names. not only
for variable names. One of the advantages of dvnamic scoping is that it is possible to
write a general procedure that makes use of variables and procedures supplied by the

caller’'s environment.

2. Dynamic Binding in Object Oriented Languages

The object oriented programming stvle pushes the responsibility for
intepretation of the message onto the objects themselves. Smalltalk-80 has dvnamic
minding of methods to a message based on the class of its receiver. This dvnamic
2inding requires a lookup of the selector in the message dictionaries of the superclass
chain for the receiver. Each object is sent exactly the same message selector, but the
object self determunes how to perform the requested operation. This ensures that
impiementation of an object cannot depend on the internal details of other objects,
oruy on the message, to which they responds. The same message can elicit a d:fferent
response Jepending on the receiving object. Smalltalk-80, for example, is a
drnanueally typed programming language. and is therefore generally harder to compile

than interpret. Operator overloading in Ada does not have this form of dvnanuc

polymorphism since the address of the procedure invoked is fixed at compile time
(Refl 33 p. 142].

F. INHERITANCE

1. Definition
[nheritance is the sum total of “genetic characteristics derived or acquired

rom a

T3

cestors.” [Ref. 3¢] Inheritance 1s especially concerned vith the management of

change, and it is the Kev to simulation, and reuse of code.

2. Inheritance in Object Oriented Languages
Ciasses are related to one another by an inheritance relationship, and
:nheritance is fundamental to the object oriented paradigm. In Smalltalk, for instance,
inheritance is interpreted as follows [Ref. 37: p. 89

1. It class B innerits from class A, then objects of class B supports all operations
supported by objects of class A.

2. If class B inherits from class A, then class B’'s instance variables are a superset
of class A’s instance vanables.

el

If class B inherits from class A, then the code of any methods not explicitly
written for class B will be obtained from class A.

Inkeritance can be used to define a class in terms of one or more other classes. If a
class B inherits directly from a c¢lass A, we sayv that A is the parent of B and that B is
the child of A. The terms ancestor and descendant are used as normal, and tollow the
irnheritance chain.

See Figure S.1 for a visual representation of inheritance. In this case class B

.nherits from class A, and B is the child of parent A. Inheritance enables programmers
1o create new classes of objects by specifving the difference between a new class and an
existing class. Object tvpes can have ancestor object tvpes from which they inhernt
characteristics. and the descendant tvpe can change characteristics inherited from its
ancestor. Scme object oriented systems allow inheritance between all the objects in the
svstem. put normally only inheritance between classes are allowed. A class mav be
modified to create another class. The class that creates the other class 1s called the
superclass, and the other class is called the subclass. The subclass inherits evervthing
ihout its superclass. The terms subciass and superclass are often used ambigcusiv to
mean both direct and indirect inhentance. In CommonObjects [Ref 38|, for instance,
tne distinction between direct and indirect inheritance is particularly important because
inhentance 1s a2 mechanism for Jefining objects whose intertaces include all the
crerations Jefined for another class without saving anvthing about the internal

representatation. In Smalltalk, for instance, inhentance is primanly a mechanism for

60

- o P RN

P s . . -,

. ~
A

[} AT AT ..".’- .‘-'\." ._-':;» DR . .--": ‘.-“.-_-.-._ T T T e
b’ AN R NEATIR A, A G L IR RGN St V3 S R TP GRS, LA YR TR VO S S SV, W WG

e s aaa sk ace st i At s A i i ind A

AR A

- ey

AR T

2-f
"~

ol

Figure 5.1 Inheritance Example.

building more complex code bodies out of simpler ones, and more complex data
structures out of simpler ones. A large amount of code can therefore in Smalltalk be

reused because 1t 1s not necessary to start from scratch each time.

G. SOME ADVANTAGES AND DISADVANTAGES IN OBJECT ORIENTED
PROGRAMNMING

1. Advantages

In general the object oriented programming process is closer to the high level
application programming than most traditional techniques. The main point scems to
be that it is easier to start with an idea, and from the idea design code more easily
foilows because we do not need a complete specification of the problem to get started.
Existing objects from other programs or libraries can be used to form new programs
instead of ablways starting from scratch. This generally saves time. Normally the
chjects we start with are bug free, the specialization, changes we add to them will

theretore be euster to perform and the time spent on debugging decreases. Information

61

. e e A P
- . . PR R e *#,
C - .- N T e PN et s .4"_;-’_ o~ R -_'._<“"\ LR WY * "-
PO T e Tt e e d AP L SRS AR N el
~ R e T SN 4".:".." PRI -."t"'!z". A nﬂf_}* A, S TRT AP SN S Gy N -8 V3. ¥ ﬁw
LI . ’.."‘l -« - -.- St .I ,-\ - - -—.,-AA‘.-AAA',IM.A

Vator o s, o o Wik

T balo et Aok dtedodhadd

hiding is supported so each of the objects can be viewed as a closed universe, therelore
the design code is more orderly. And finallv the programs are easier to maintuin.

In general we do not have to worry so much about the detais of the
algenthms. but rather work with the description of the properties of the objects we use
to build the program. We are at a higher ievel of abstraction and specitications of
hehavier, e we worry about what to do instead of how to do it. The huardware
resources are taking over much of the work previcusly done by the

Jdesigner programmner.

2. Disadvantages
MacLennan [Ref. 19: p. 3] states the foliowing general disadvantages ol chk ect
oriented progranuming:
I. 7Itis difficult to reason about things that change in time.”

-

‘Object oriented languages provide little ability for algebraic manipulation.”

[D%)

“The analvsis of object oriented programs can be hard.”
In addition it 15 hard 10 master object oriented languages, like Smalltalk, because there

is such an enormous number of objects available in the svstem. It is generalls casv to

1

et started using a subset of the svstem, but to use all the built in capatilities in the

Laat

iorary takes a long time to learn and master. The namung convention in SmalltalX is

qu

ererallv better than in Lisp. ie. the names used on objects gives a good indication of

.

“he purpcse ol the objects. Lisp also has a large number of functions. often -avith
names that do not give a good indication of the purpose of the functions.

The Smalltalk-80 system is not designed to run background processes, or to be
run on a ume shared computer svstem. Much of the reason for this 1s all the locps in
the scurce ccde waiting for a pointing device (mouse) input, 1.e. the cost of a user

friendiv window interface.

H. SUMMARY OF THE CHAPTER

The main paradigm of obhject oriented programnung 1S simulation. Onect

crierted languages are organized around objects, and grcup data structures and

i

(@)
(a8

ines together into objects. Smalltalk-30 15 a tvpical example of object crieniad
programnung languages that supports the four critenia in this thesis: nformuation

nidinz, data abstraction. dyvnanue hinding, and inheritance hierarchy.

62

N A
;' AP S AN

o

PR R R LR
PR RN

g by 8
PO A

I3
En N

» i el
LA

v

LR L A XAY

AR NN .
O R A | .

}L"L‘.L‘.L "

.

]

A

AR A
Y '\- ".\.‘l \-u..m.:‘d'l.u\.l_\ ‘--n.\.’;-n_‘i._\l 4.,:.:; PV PR Vel AALSAA.&A HOWEN

Twewg g e r 0.2 0.0 2.4 o god A0 ank Sal el Sak T YT s 8T w T
) B i

There are five mujor concepts in Smailtalk: object, message, class, instance and

method. Svstem components dre represented by objects,

~

clasees, objects interact by sending messages, and messages causes methcds o be

greculed.

Ime main advantages are that we can program at a higher level of absiraction
and specticaton of behavior, in additon the dynanmuc binding makes 1t possibie to

write general procedures that use variabies and procedures suppiied by the caller's
enwironment The disadvantages are long learning time Jue to large numbers of

orieciy and classes. The dyvnarue hinding makes the svstem siow,

. . 1,‘ . N .4-'\‘ ° *._-. \‘ - ‘-»"-' ‘.‘
G e .

obiects are nstances of

%) VL. INHERITANCE

A, BACKGROUND

“In a simulation of anv complexity 1t is infeasible to describe the behavior of
every ndividual object,” because the simulated “world” consists of such an encrmous
numoer of obiects {Ref. 31, Due to this infinite mass of information it is impossible 10
represent all the details about the whole universe inside a computer svstem. [t is casier
1o group cbiects wnto classes of simulanily behaving individuals (abstraction). so that
their common behavior can be described just once. “Abstraction is the decision 1o
concentrate on properties which are snhared bv many objects or situations in the real

world. and to ignore the differences between them.” [Ref. 10: p. 84] In object oriented

programumung languages, like Smalltalk, all computation 1s viewed as simulation, the

.

paradigm supported in this thesis, and programming language objects correspond to

DR

>

real werld objects. The purpose of a computer program is normallv the modeling of

ot
-t e

some aspect of the real world, often involving the changing relationships among real
world objects. Abstraction for the simulation, and selection of refevant subparts of the
universe, is needed in order to design and code a computer program. “The state of the
amulation 1s represented by a finite number of objects connected by a finite number of
relatuonships.” [Ref. 3:p. 9] When a prcgram executes. objects mav be created or
desteved, and the relationships among them may change. In addition to the real world
objects we have the “"nonreal” objects that can be examplified bv the "what if”

questions in spreadsheet applications.

B. INTENSION VERSUS EXTENSION

Because the computer 1s not abie to represent the whole universe in a sunulation
it s necessary 1o Jistinguish between intension and extension. In an cobject criented

lar.zuage, ke Smailtaik, the entire state of the simulation is therefore represented by &

tnite numbar of chjects connected by a {inite number of relationships. "Two relauens

64

T IENDEAE R L
PR PR TR L A "

mmmm"v""“'”“"‘

have the same :ntensicn if thev are supposed to model the exact same external
relaticnships or properties. Thev have the same extension if they apply to the «ume
chiect,” (Refl 31: p. 12] and extensions may vary over ume. Two relations mav be
exzensionally the same even though thev are intensionally different. The intension of a
coraputer object is the real world object 1t 1s modeling; the extension of a computer
ool o the set of relations 1o which 1t belongs. Objects with different intensions may
coinerdenty have the same extension. T'herefore two or more computer objects that are
intended to model distinet real world objects may agree in all the modeied properues
and relattonships. This mayv happen because a computer system 15 unable 10 represent
every preperty and relaticnship in the universe. The designer programumer must select
¢ rinie number ol these objects and relations that are relevant to the problem he she
wants 1o scive. The programming language svstem may have probiems distinguishing

imteasionally disunct relations that happen to have same extension.

C. INHERITANCE IN GENERAL

1. Inheritance versus Data Abstraction
Object oriented programmung encourages modular design and software reuse.
Dara abstraction is the ability to define new tvpes of abjects whose behavior is defined
aosgractiv. Normally an chject oriented language supports data abstracticn by
oreventing an object from being man:pulated by other means than via its defined

Xternal operations. The fundamental idea of inheritance 1s that software medules mayv

[

He Jdefined as extensions (specializations) of previously defined software mocdules. The
origina. software module does not have to be modified when 1t 1s used as a basis fer a
new extension. In object oriented programming where the basic software modules are
based upon abstractions, an extenston of a software module would then correspond 1o
a refinement (specialization) of hierarchies of abstractions.

Inheritance compromises encapsulation (modularization) in many object
criented languages. For example Smailtalk lets the programmer access the inherited
instance variables. The benefits from encapsulation are improved understandabihity of
rrogrums and easier program modification. To be able to do debugging and creation
S! programrung environments most programming languages provide wats 1o

carvumivent encapsulation. [n Smallwaik. for example, the operation “instVarAt and

At

- - " . . ‘._. . . . " s N
- C et e " ~ . > - R
PRI IS VS PL.PL PEPGPV. PRV RYL.F 8.V S5

B PR B .
e Ca,)t ~ At - e)
ey '.::n‘.."\; PO W W U Py NV S P W .V

N - - a dh O Gall Sal hal PTaN %)
ia e vy ; C

r- instVarAnput” allow access to any named instance variable of any object {Rel. 30: p.
k- 247]. This 1s special features that will noct be covered more in detail. Innentance
ﬂ . N . . . - . ~

- complicates the situation by introducing a new category of client (user) for a class. In
- b - ~ ~ -

addition to clients that simply instantiate objects of the class and perform operations

on them. also other clients (class definitions) inherit from the class. Venn diagrams will

be used as a Jescripuve tool in this section in order to clanfy the inheritance probiem

‘Ref 39:p. 28], '

] - t

Manv of the 1deas in this section of the thesis builds on work done by Adele

S Geidberg and David Robson.

, 2. Subclassing
! Single inheritance is the case where the inheriting class (the child). directly

. inkerits {rom a singie class, the parent. Hierarchical classification is to factor out
- common behavior of several classes of objects. Smalltalk and Simula do this by
\: rermutiing classes to be subclasses of other classes. In our definition of object oriented
A prozramiming the feature inheritance hierarchy is the one that supports the simulation

:. naradigm, and makes the object oriented languages so special. Without inher:itance the
N addition of a new type of object requires writing entirely new procedures for common
. operations. There will be a great deal of similarity between these different methods, but

there will be a need for continous rewriting of methods that differ slightly or not art all.
Inheritance can reduce this burden, and drastically reduce the number of lines of code

: in a program. Smailtalk-80°s class hierarchy builds on run time checking, and run time
E ~inding of messages to methods.

:.. David Sandberg [Ref. 40] describes an alternative to subclassing that uses
' compile ume tvping, adds parameters to classes, and introduces a new form of class
g
S caded a descriptive class. This alternative supports building larger modules from

b smailer modules, while Smalltalk-80 encourages refining the behavior of an existing
_: class hv creating subclasses. Like subclassing, the descriptive classes allow sharing of

ccde. The subject of descriptive classes wiil not be pursued further in this thesis.

N The class structure described so far does not explicitly provide ior any
E intersection in class membership, see Figure 6.1 for a visual representation. None of
) the classes in the figure overlap, so there are no shared objects between classes. [n the
3 Venn diagrams used in this section, the circles represent the classes and the black dots
':: tae instances. The representauon of an instance of a ciass would then be a black Jdot
- within & ardle.

;.

3 66

RS f‘? - ‘~ . ‘.'~ C ‘._‘ s _. . . \-‘._;.._ ot RS o ‘:‘_‘.‘ RO .\“ SRR -., i I .._» “ - c .. .‘-.; Lo
PR .)

A:.L}“.‘.'L‘- :' .g}_g‘_;ll.'.h .A\A" .Ahl.‘\-r.n Ahu‘l.;m\nL-A.‘lmA-')lA‘n-lh'l."l-\;'h-)._g _A-_A....A.;ks_l_‘ "hkh“.‘}_& \-L‘-__.LA
RS Ll

TR RV R R R T T

m\w s maa dia-8oe fien A ca-bon Aun i AAEchin St inchies

)

-

Figure 6.1 Without Intersection in Class Membership.

The task of creating a specialization of an existing class is called subclassing,
and the existing class is a superclass of the new class. The classes in Smailtalk-80 form
a tree; more than one class may share the same superclass, but each class has only one

immediate superciass. The root of the tree 1s the class “object,” this is the only class

without a defined superclass. In general the instances of a superclass cannot be
affected by the existence of one or more subclasses. Therefore variable names added to

a subclass must be different from any variable declared in the superclass. The subclass

nherits instance variables, class variables, and methods from its superclass. The
subclass mayv add instance variables and class variables to make the subclass more
speciaiized than the superclass from which it derives. A subclass can also override or
previde additional behavior to methods of a superclass. Methods are overridden when
a new method for an old method’s selector is provided [Ref 33:p. (42]. If a new
metheod makes use of the old method in Smalltalk a message-send to the
pseudevanable “super” 1s embedded in the new definitton of a method. The new
hekavior may precede, follow, or surround the existing behavior.

[f, in Smuailtalk, dunng a message-send a method 15 not foeund 1n the

immediate ciass of the instance, the superclass method dictionary 1s ¢hecked, 1f not

W e h e
R -t

[

D P U L R
LI I R e L N -
P YA, ¥ 5T Y Yt 0.5 WV SV.

.
Pl
s

i
.
)
»
4
x
4
P
ag
e
[}
i
re
2
’
[d
B
.
»
\
:
\
'y
o

-
kS
\

)
1]
~
“
\\
~
)
R.'
E
~
r.
.
*
E

wTw g W O €= . . T

Figure 6.2 Subclasses.

found there either the superclass’s superclass is searched and so on until the “object”
(the root of the tree) 1s searched. If even the class “object” does not have a matching
selector then an error message 1s returned.

Subclussing 1s to allow a class to include all instances of another class, but not
to aliow more general sharing in class membership (1.e. not multiple inheritance), see
Figure 6.2 for a visual representation. A subclass specifies that its instances will be the
same as instances of another class, its superclass, except for the differences that are
explicitly stated. Smalltalk-80's subclassing is a pure hierarchical svstem; t.e. if there
are any instances of a class that also are instances of another class, then absolutely all
the instances of that class must be instances of the other class. In Smalltalk the classes
themselves are considered to be objects belonging to a meta class. A meta class 1s a
cluss whose instances themselves are classes. There is a one-to-one correspondence
hevween a class and 1ts meta class.

The use of classes and metaclasses provides a mechanism for sharing
information between different objects via inheritance. Inheritance is not the oniv
scheme for infermaton sharing, and the requirement that each object permanently

belongs to a class imposes constraints on the mutabihity of the behavior of an object.

6%

\

v, An example of another mechanism for information sharing 1s "delegation” {Ref. 41: p
- 60}, Using Jelegation, subcomputations can be passed on by an actor to another actor
which continues the processing. Delegation provides a mechanism for code shanng
. where the control 1s passed t0 an independent actor. In inheritance mechanisms, on
v the ciher hand. information mayv be requested from a more general class to which an
_ 4ctor belongs, bur the control remains localized. Actors are computational agents
:: which carryv out their actions 1 response to Incoming messages. AcCors encapsulate
N

procedurar and declarative information into a single entity. High ievel actor languages
use inheritance for conceptual organization and delegation for siructuring the sharing
or code between ditferent actors.

CommonObjects [Ref 39] is an extension of Commen Lisp. and it s
representaiive of a new gencration of object oriented pregrammung languages that
puild on the Smalltalk and Zetalisp experience. CommonQObjects provides strenz
support for encapsulation, in particular with respect to inheritance. Classes are not
obrects in CommenObiects, just as tvpes are not objects in Common Lisp. The access
of a subtvpe to its supertvpes is restricted to the same abstract interface as that
presented to users. Muluple inheritance, for example, from two classes with wdentcal
named nstance variables result in separate coptes of such variables when an abstrace
user interiace is used, but only a single copy if a non abstract user interface s used.

[nheritance, in CommonObjects, is a mechanism for defining objects "vhose nteriuc

(2]

:nciude all the operations defined for another class. without saving Jn}':h:ng a~cur th

(84

internal representation.

Inherited Instance Variable

Gerierally in obect oriented languages the code of a class can directly access

¢ii the instance variables of its objects. This 1s true also for the instance varabies
Jetined by an ancestor class. Pernutting access to instance variables defined by ancest

viasses compronuses the encapsulaticn, and therefore weakens one of the mujor
menernis of object oriented programnung. This problem with instance varnudles has
resuized in many different implementations [Ref. 39: p. d0]. Flavors [Ref. 27} does not
Lievs merging of inherited instance vanables und 1nstance varables defined locaiv in i
woasss Smalltalk signals an error if a class detines an instance variable with the same
name ay an inherited instance variavle. The subclass (in Smalltalk! inherits 2ot the

wLnabie declarations and methods from its superclass, but gives wseif a new class name.

._.
o
P

vatence of 4 subclass cannot atfect the superclass, therefore it s ilegal o add a

6y

variable name to a subclass that is declared with the same vanable name in its
superclass. Addition of shared varniables will make them accessible to the instances ct
] the subclasses of the class. This also means that a subclass has the same, or a larger

aumber of vanables than the superclass (1.e. the subclass 1s more specialized).

- 4. Programmer’s View of Inheritance
[-. [t is not obvious that the designer of a programming language. cr a
programming environment, thinks of inheritance the same wayv a user does. For the

Jesigner programmer the purpose of inheritance can be the following [Rell 39: p. 41}

I. A private decision taken by the designer programmer to reuse code because 1t 1s
useiul (saves time) to Jdo so for him her. At the same time it should be easv 1o
' change such a decision later on.

»
« e

2. Making a public declaration that objects of the child class obeyv the semantics
of the parent class. This means the child class is a specialization of the parent

class. Bracnman ccvers this in depth in the context of knowledge representation
[Refl 420 p. 80-93),

For the programmers in object oriented programming, a single object mav look
different in different cases. i.e. muitiple views. That is because the programmers use
ditferent parts of the object, and manipuiate it differently. When the multipie views 1n

s’

w a4 A KTy

add:tien are used in a inhentance hierarchy, there are some problems with how the
programmer understand his programming environment. which consists of a large
numeer of objects.

In an integrated interactive programming environment 1t is important that the

user intertace is consistent, and as powerful as possible. Multiple inheritance, without

restrictions caused by the computer svstem. is the most natural to use for the

A\ il
rrogrammer. On the other hand it is very difficult to implement mult:ple inheritance in

an ntegrated software svstem.

D. MULTIPLE INHERITANCE

I. Overview

The most general way to achieve multiple inheritance in object criented

-

&, 3, 8 " 'l .l .l

.anguages s te allow arbitrary intersection of class boundaries, like in Figure 6.3 which

LS

shows armirary ntersection of classes. Multiple inheritance allows a situation in which

Lamie otiects are insiances ¢ Uwo or more classes, while other obrects are instances of

L S O Ny

L aa on s aod sad Sal e Sehe SARNC Al

onlv one class or the other. Multiple inheritance i1s a very powerful technique for
reusability of code, allowing the combination of more than one previously defined
class. Multiple inheritance presents probiems in terms of what is to happen it there are

mult:ple paths or contlicung instance variables. How can we make chunges to the

~
‘.
!
i

inheritance hierarchy safely? [f the use of inheritance itsell 1s globally visible (as in

most impiementat:ons) changes to the inheritance hierarchy cannot be done safely.

Figure 6.3 Multiple Inheritance.

In Smalltalk-80 the implementation description can be modified by a subclass
ay follows [Ref 300 p. 39]:

1. The class name must be overrnidden.

to

Variables may be added.

3 Methods may be added or overridden.
To overnde a method means that if a4 subclass adds a method with the <ame sclector as
a methaod in the superciass, the subclass's instances will respond to messages with that

seieyior by executing the new method. Standard Smalitalk does not support general

muitiple inherntance, it uses a tree structure, e each cluss has onlv one superclass.

The pure tree structure used in Smalltalk, and the f{act that there are no hidden wide

"1

".';L‘F.u:".r".r:.-".r"';..‘.-.?.a;.m‘.n:.x N e e A A

N N
o e B By

mmmwwﬁ-v-.ﬁ_---. -

effects upon other objects makes the language easy to use. In the tree structure
essential tnformation 1s highlighted on one level and the details are specificd on a lower
levei. On all the lavers of the tree but the lowest, the objects are fairly complex. Many
he ideas in this section 1s from Alan Snvder’s work, especiallv from his paper:
‘Encapsulation and Inhenitance in Object-Oriented Programming Languages”
Ref. 39: p. 38-45].

Muitiple inheritance means the class can have one or more parents

R AR Z T T g gl S
<
-

(superclasses). A class can be viewed as formung the root of a directed acvclic
inheritance graph, where each class 1s a node and there i1s an arc from each class to 1ts
parent. “In Smalltalk, programming language objects are grouped into classes (i.e.,
abstracuions) of sinulanly bchaving objects.” [Ref. 31: p. 5] An example of muluple
inheritance is shown 1n Figure 6.4 which use an acyclic graph as an illustration of the

problem

Figure 6.4 Example of Muluple Inhentance Acvche Graph.

There are three strategies in common use that trv to solve the preblem with
muinrie mnhentance. The first tries 1o deal directly with the acyilic inhenitance graph,

fhe seeond first flattens the graph into a hncar ¢hain, and then uses the rules for angie

il]
2
- - RS '._ n - \. \-.'.~ -~ -‘
Iy / e ::.-.r_ RO
e e B A VR RPN
- . a e -\ —_ - - - i vl

WYY W "y "% " - ¥ - m— = ==
e o moh A Sl e
L aoh Aon auk dolk el d

\

u‘\
a
)
- inheritance. The third, the tree solution, avoids the problems of graph oriented and
},.?: linear solutions, by duphcating nodes. These three solutions will next be covered in
o more detail.

2. Graph Oriented Multiple [nheritance Solution
:’ Examples of object oriented languages that model the inheritance graph
:'." directly are; extended Smalitalk and Trellis Owl. The operations in these two languages
::';- are :nherted along the inheritence graph unul redefined 1n a class. The inheritance
- problem arise when a single cluss 1s reachable from another by muluple paths as in
-,. Figure 0.4 where the graph 15 not a tree, but an acyclic graph. [Ref. 39: p. 42]
\‘_‘

rowre € 5 Example of Altered Graph Oriented Muluple Inhertance.

[n multiple inhentance one class can have more then one parent. i there s

wore than one parent, and the class inhents operancns with the samie identisy - nume)

cromomere than one parent, there s un wdentity confhot. Thas idenniny problem can e
soreed, see Pigure 63, hy redefining 0! the operauons no the subaass |

RN
Celia)

Doadvansazes wath the graph crented solation are that for any ancestor cass there

AU oderined niyoane set alinstance varianles, regardiess ot how many paths there are

Caoadhotne casson the mmbentance wraph Ths Limats the prowvranuyier s reedon to use

Te g v g et ettt

Leran aae et aa add ain o acs s Bkl e R dhadh kel o

the inheritance within a class without the possibility of destroving some descendant
ciass. The problem is most serious it the operation is invoked on the same set of
mstance vanables more than once, and if the operation on that specific class has side

aF e
Ciliveis.

3. Linear Chain Multiple Inheritance Solution

Flavors and ComumonLoops are examples of languages that use linear solution

!
H
"
.
E
r
¢
f

to solve the muluple inheritance problem when the graph 1s not a tree, but an acyclic
graph. These two programrung languages “first tlatten the acvclic graph to a linear
<ham, without duplicates.” Thereafter the result is treated as single inheritance. See
Froure 6.6 for a visual representation of the solution. Algorithms in the language create
a totul ordenng that precerves the ordering along each path through the inhentance
graph, but unrelated classes may be inserted between a class and its original parent.
The computed inhenitance chain may have the property that parent of a class B may be

a ass A with unknown content to the designer of class A. [Ref 39: p. 43

Figure 66 Example of Linerized Chain Muiuple Inhertance.

Ore Jivadvantage with the linear solutien 1s that if more than one parent

Zefines the same operatien, one operation wiil be selected Other proficms are from

. S e Ut
R e A

R A N A
PV SR SUP Y N, VA O W e

At ata bte S hdal S bl tulbe~ el Sl A

m"_'_'_‘-“-v-' TOwywTwI Wy

the fact that unrelated classes mayv be inserted between a class and 115 original parent.
This inserted class mav redefine some cperation so that the communicaticn between

:ne child and the onginal parent is broken.

Tree Conversion Multiple Inheritance Solution

Beth the graph crented and the linear solutions have some Jrawhacks, as

lter. The tree solunicn avoids these problems by duplicating nodes. sce

{igure o4 tor a visual representation of the solution. There are suil unresoived

rrobiems with mulupie inheritance because the inheritance 15 not close enough to th

[

u<er s view of muliiple inheritance.
CommonObjects 18 an example of object oriented li.nguages where the
emantics models the inhernitance graph (Refl 39 p. 34

I, Regardiess of the source it is iliegal to inhent an coperation trom more than one
parent.

(]

Euach parent of each class defines a completelv separate set of inher:ted instance
veae graph s converted into a tree by duplicaung nodes. and
5 4 sepdrate set of instance varabies.

Scouatnons are therercre avowded wiere an operation can accidentiv be invoked multipie
mes on the same set of instance vanables, or where two classes contlict in their use af
anombented class. In CommonOtbjects these probiems are corrected by restncung the
aeetss 12 tne nhernited nstance vanabies. The access s provided o the e of

erationy, und the mu.uple inhenitance supports encapswiated ciass detinmgons.

E. SUMMARY OF THE CHAPTER

[nheritance in object oriented programming languages facuitates reuse of Jole.

o
“
(.

S sowre modules mav be defined as extensiens ospecializationsy of previcusiv s
are moduses.

S:omeie nheritance s the cuse where the innhernitng ciass Jdirectiv wmherss v

<22 sass, the pareat. In our definition of oRject onented prograninuny the learine

cmtance hierarchy s the cne that supparts the simulation paradigm, and that muases

Dooteltoniented dngudges sCospedidn,
N - R —~ o, ot o g a4 " A N P AR . .o
S TCANNn D N IO S a dlans Tooncade dlnstances of anoiher clds, DUt Lol
reogrneral shanng n ey memteniupe ie not muitpie mnentanee 1
-3

AT I PP S U AT S A PSR W Y Wy SN Y

P B Tt . vt : EACE o -‘ RIPIRNT Y
A B e T - e s D . N . - N . . - Lt
s PR AR N R U VU VL DU S SRS S 00 SISO ST OU e POPSVEVETEVEVERE Y = |

T O I T o O i e O T W i T W W W W i T W W o o —— -

: [

more general way to achieve multiple inheritance in object oriented ianguuages i to
aliow arbutrary intersection cf class boundaries. There are three cemmeniv used
methods to solve the problem of ‘mplementing muluple inheritance: graph onented

scwauen, linear chain solution, and tree conversion solution,

IS
I I RS SC R T N A AR
VSl s L S s S L N R D DR S R AL

A,

Py
Nt

Y) \‘-'

VIL INTERACTIVE PROGRAMNDMING ENVIRONMENT

WHAT IS AN INTERACTIVE PROGRAMMING ENVIRONMENT?

| Definitions

\nonterdllive progrgmnung environment 18 g soltware satem e
IMATIDGIATRS STIThaTe programs While codperatng’ with the user. A soiftaare suisten

SO N o0TWare toCs that odnoard the weer momms her jeb These oo mude
2t

Programmung language

1 Crorellr

~oamTuer

oAU generater

SR L WA

b Al GNERIN T [

D counenian toos
Lorl ooy

- eat oliing

. sreang wnedker

- N o RS PN

. SE IS AR of ST R S NN S\ S R SENIVE TPV
N R N R A I T S P
TSN TRICTENLT JenentT oS
T T N S crardin Jorgram ot
- TUNINATL Lo ~
TR e
. CC I LT LTS adTy dnd ot s

A A e WY OV PR € WY N

A S AR S

PR P TR PR T TR LT WY T TR L TR TR e o E e e e R
i asa AR A AAAth o uah s ah ude alh ale aih el ahe ol abd abiabicakiiabithieakied

'1

r\b

,.':: ~. Maimntenance tools.
. 1. teSt program generators.
D, tracers.
<. dumps and dump interpreters,
d versien controb
e source wode control
v, Performance tecls.
& measurement teols chistogram generators).
0. anaivte perfermance estimator.
<. bhencnmarking.
J. opunuzers «pcth object and source codel.
S, Mlinor teeis
A .

N directories.

2. Impact of Tools

Solvvare tocls are heconung more and more mmporunt in developiny new

ipmheanon areas for computer svstems This transformation to interactive nieprated

Srograminuny ensiroaments provides the user With conversationa. aceess o Jala

intearanon means that the ditierent tocls ure designed 1o fit together, and are ale 1o
~2ocaen other s ceaturess [he antegransn ancreases the power of che ensvironment
Soaesg he sumototar O the svstemoos owarger tharn the sumoof the sangle oo The
STl groun OFusers orien view the svstem onoyoas g tees thuer maav hep them n
oo~ James Burke stated it onee [Rel <!

3.t rne mement man frst P ~cked wroa stone or g nranch 10 Use s 0 o
neoacered rrevocdbin the haance nc ween umodand s envirenmment oo

oot -:1. the wur in which (he .u"rid arsund i Cangsd
Soferent [rowas no lohger regwar or prodictable. New omests appear
Satowere nororecogrnizaNie av g mLlation b someth T tad ened
et ore and s zach dne emerged 1t altered the envar cnme OTCRIOY I URNITENRE
G ore\er While the nLmimer o shese 1oy rentanod Ml T
LY 0'5 LE T ONpread and U cause Chanae BL.I T N SUE T
S thererTocts, the et T nasler the rate O ohange

Vet oeond LU mrinlems ne she can and wnaowant toosalve, now LA e she 0o g
N LTI T TR T JTaminier cal a0t Te LT Ume o ooUNITE T < S
ST vt ot 0 conentadad . desgn and ampeeent a nooom e S
_\

" P R
L, Vi Uiy P YU WO S

N~
b

mere ambinous and more productive. The avaiabie programming tools are a critiead
part of the environment, and much work todayv 1§ going on to implement and test new
NIV

-

What is so Special about Programming Environments
Historeaily programnung envirenments huve heen used o hed

Jesizner programumer an the Jevelopment and muanlenance of software. In the

nning el used mm.ow*puxr.z;d toois like coding forms pencus et Soon thn
cvonved inte camrputenized tcols ke assembplers, compiers and hagh lesel programmung
Languages. The designers and programmiers butll teole 1o help themselves: sumbolc
Jehuggers 1o ad in the debugging process, operation svsiems and cile sistems w0
mAndge the computer svstem, text editors *n ease entry and modilcaton of the
~rogram texy, and so on.

I e unigue thing about an interactive integrated programnung environment :s
Shat s used 1o represent and deve.op other programs, and 10 muanipulate these cther

Arogramis. Moanv o the abstract tvpes are entties 1n the program the progremmier o

G e N N .l . .o - vy . T i . N M .- - -
Juleioring onothe anteracuve programmung environment. The disuncuon tenween the
e e enr e v v e ol 4 o e is g - . . N . vy ke Che e § N -~
Aroeram thar s manipulated, ind the programinung environmen: in which olois heing
manieeiated peeomies less and less over ime. Inoan onteracuive integrated programnuny
. - e e .. - -y, 1 - . s ot e
craoTonment Ne Drogramumer OONINE dClaindiated
Ttion, o and WRtnoul gnang up o wanabinnes [~micuin, om0 rrogramnung
JLTUIUTVIONTS, Lomnuter rescurees dre Joing cthe work oo onder o sdhe Nanan
Podae we have a vanets of programimyny ensironmienis, DUt there et no
. . ~ B ~ 1Y st Ve . N
K SRl cobsndanon of them Buareow und Shrote ‘Re ~ S0l suvgest i
= TS o ANses
! 0. . N e omaey s
. PR - L A A\:ALA “a b
~ v e aen s e b cev e 1 e .
N CRIATITTLNY environmments coneerned pomarny with e coding phase and
. NN - ' - ’ e d e Y IS e v e
LSO T IRAR RPN S ALEE CLON SN LIS P o WA OTUE AAIIDS U PR DR e
N 2
Y
. - LIPS co '.“"
‘_- ot e e *-’ N - .

- .
L CPCPCA Y S ALl

A;Jk.}\- 1‘_1‘ PR P

L‘a L- i-»_‘.

mew"“wwww- T W TR Y ——

integrated programrung environments like Interlisp and Smailtalk. These two
environments are relativelv easy to extend to take care of the whole life cvcle also e

Class angh

B. IDENTITY OF OBJECTS

1. Definition of ldentity

[denutv is that propertv of an object which distinguishes each object from all
athers. [Refl 43:p. doel Two dimensiens, at least, are involved n identity, the
representation dimension and the temporal dimensicn. The representaticn dimens:cn
c.assifies the programmung languages based on whether theyv represent the identity of
an chrect by o user specified name, by ats value, or if it 1s built into the programming
language wtselfl” [Refl 453 p. d14) The temporal dimension classifies the programnung
anguagzes baced on whether thev preserve their representation of wdentity within &

or ransaction, beuween tranpsactions, or between siructurai

SN Tl
=)]]

2 Identity in Interactive Programming Environments

Mot programmung languages do not differentiate petween addressabiinn and
.
e e - il TN - .} rean- R B
centosand wee the vanable names ds the only wav o disunguish empaorany ciasses
~ N
Soaltaik-vooampements idenaiy wath the oop cohiect criented pointers An
. « U oentoh onoan ohtect tapie e 4 sav that 1 od cren g e e lopyapes s 3
! NOdn KN,y o O ODIeCt arie, 4nia We sdv ne Jdentithy 8 minlemenics
f e RN Uias ’ . i . - { B \ . 5 . - . N e ’ Il
voocchoa level of andirecuion. Indirecution, e andirect phiaicdn Or oariud.s rddress
Sementalions wWould abow ndnaduar casses aohjedtss o pe mioved wWilin one
Cde s - 1w - A ~E e P . N N - e N T o))
codraes apacas Thos would provide faid data independence, hul not aldow <panng o
- . - L ey e, . - -) . - v b - v ~ven e ~pe -
Cofesgsooapjectst among muitipie programes The oups are the mostcommen form
e : Ly the § kLNt aeept oy
Lo omanipuiated by the Smuaitalk-Me nterpreter
In ohject ormenzed Systemin, Uad SMalLHK, ThE INVIANGE VAN JUTarnne e
_arrentostate ofan ot whie the menoros drhned i tne o7reet s coass deternune now
oo olt menaved [y poaetle that Tu 0T piore OTedly it N denhid, an v
STt fooiaation, Ar e renresentng duterent real world ofjewie Jhe iennn
oLt N A Doteretore disninglishes cach ohiect esen in the
- 2 ST N i S b i TN SCNTICd ood nroarernes Wil
A
. . . ,".. - - . . - . - . . e NN L . _’..'-.
e A_‘_V;“L‘.‘L‘.’»L’L‘A—i&.ﬁ‘.&'*i.&.A"_AL;A_;.L.J_“‘A_;.L-;E_:L. P G PRV LA G S WP Y G U0 Gy e Wy | :-*-*-a-‘n‘\‘;-.\‘n-hh.‘

Ty L padh iadh Sadh Salh Shadi Ladh Jh Sl S
< S lia Al e salin Y TR

i The 1denuty s verv important <hen bullding interactive ntegrated
environments using object oriented programmung :anguages. The tools are using 2ach
::j other, therefore distinet identiues are critical to prevent idennty conflicts.

! 3. What Language to use in an Interactive Programming Environment

-::: In theorv aii programming languages are equally powertul. To actually wrnite
:::E the code in Jdilerent languages mav be more cr less casyv to do for the programmer, but
N :

that s rreievant as a theoretical measure of power.

n general, programmung lunguages are more suitable for certain jobs than
others: Busic 1s easy to learn and is good for small dialogue oriented applications,
Foriran 1s well suited for numerical applications. Cobol is twilored to business data
nrocessing. Pascal is designed for teaching structured programmung. Ada 1s ideal tor

large embedded systems, Lisp is very good for processing svmbolic intormation.

—

Smalltaix s designed ror simulation. APL for manipulation of vectors and matrices, C
tor svstem programmung. Simula for discrete simulation, etc.

An interact:ve integrated programmung environment consists of a set of
comrputernized tools that s designed to help the user of the svstem. The programmung
eavirsnments take cognizance not onlv of the technical nature of the sofiware
censtruction process, but aiso of the soclal environment in which 1t is actually used.
The programming task takes place in various managerial and social settings, so the
computerieed tecls apprepriate 1n one context and may be mnapprepriate .0 ansther.

Cuarrentiv 1t seems 10 be easier 10 umplement an interactive inicgrdied
TTOZTammuny environment in an interpreted language with dvnamic tinding than inoa
raditicnal compiled language. Lisp and Smailtaik will therefore be ccwvered in more
Jltdlin resation to interactive integrated programnung environments. In Smailtalx-so
the noremental program execution of Lisp is combined with Simula’s class subciass

and virtual concepts. Smalliaik and Lisp have a ot in common: 2 flat set ¢f delinons

rcaassesi, dvnanuc name binding and run ume (vpe checking. Both Lisp and Smalltuix
mave a main loop written 1n atself, Smalitalk or Lisp respecuvely. The loop: read

[}

command, execute the command, print the resuit, and loop. And both languages

support exploratory software development.

s

L L e e s e s ai s aclc gt s DU chinti e R

1
2.

- 4. Incremental Program Development
iy Complex problems are often difficult to specifv and design. We often know we

have a problem, but exactly what causes the preblem and how to solve it mav well be

l more ditficuit to find. A sottware program will normally go through a series of changes
]
o over its hie cycle. In the beginning 1t may exist as a loose mental description of what

. the designer programmer wants the program to perform. This in turn may (or mayv not)
eveive intd a more formal specificauon, which 1n turn may evolve into a design, and
finaliv become code in some programming language. Muintenance may also be done
iy the suioe fushion. See Figure 7.1 for a visual presentation of this incremental

program Jdevelopment.

implement, Use,

make 8 product observe whether
based on theory the product

worked

APPLICATION

Design,
formulate theory
based on experience

L

Figure 7.1 Incremental Development.

The program may evolve as a series of experiments, in which the result from
ore step gives the input to the design of the next step. During this process, the
progrm may undergo drastic changes as the problem is better understood. The simple
structure the programmer starts with grows by increasing the complexitv of the

mnodules. The entancement process contnues recursively until a finished product exasts.

lie growih can occur both ‘horizontally’ through the addition of more facilities, and

QO

m L ank ok oo d adl dadesd tiet i uhlie i SR A=
- ek ~ -

.

T
fil]

vertically” through a Jeepening of existing facilities and making them more power!y in

i'_:'_ scme sense.” [Refl 46: p. 63]

:;'-:i In an 1deal interactive integrated programming environment all of this process
N would rake place within the computer svstem, using 1ts resources (tools, hardware, etc.)
A 20 nelp. The user of this Kind of syvstem seems to be more of an “artst” than an
L' cperater. He she will have the ideas, but use the svstem's resources 1o test and
:EZ:: :mipiement the program using ncremental programming development.

v

Maclennan [Retl 43] defines system development: "The entire process that
takes an :nital idea in the ciient's mind 10 a final constructed svstem that satisfies the
client. That :s, the enure lite cvele” of the svstem, including later evolution 1o Xeep the
cient sausiied.” This delinition shows how dependent the, often computer illiterate,
cuent Is on fawiess communication with the designer programmer in order to get what

. ;
o¢ Shie wants.

C. HOW TO PUT THE USER IN CONTROL

The foliowing three principles can help the average user of a computer svstem 0
reel 1n control of the computer resources:

I. Responsiveness. that is that the user's action at the computer should have
direct visible resuits.

2. Pernussiveness is to let the user, not the svstem. decide what to do next. The

svstem should appear modeless to the user.

[DF]

Consistency is to use the same interface for the whole environment. and for ail
applicaticns In the environment.

Some producers of personal computers, like Apple’s Macintosh and Cemmodor's
Armiga. have applied these principles in their svstems. Thev have to a large degree

managed to put the user in control, but the cost has been much more complicated

applicauon software. The burden has been moved from the user to the hardiware and

¢ programmers of application software.

W e =N W T T

) - ~ t . et
P A M P L A R R

errw,,hv, A frioiae e ans ek Skt Ak Aed b
Ce
'r\
{\
v,

»

-
-

" e sy

a's 2 A

4

"

-~ - . _..-..'.-'.;!’;'-,.". ;‘-.-:’.:.,..fm
A AP IS T

D. LISP IN INTERACTIVE PROGRAMMING ENVIRONMENTS

. Why use Lisp

The basic svntax i Lisp s very simple, and the programs are naturaay
represented in simple Lisp data structures in 2 wayv that reflects the structure of the
progrum. Lisp represents both data and programs with lists, therefore it i1s simple to
write Lisp programs that read, preprocess, transform, and generate other Lisp
programs. Lisp requires no declarations and therefore programs can be created
incrementally, this would normally be difficult in a declarative language. The dyvramic
tvpe svstem and flexible data structures make Lisp well suited for badly specified
problems, and very well suited for experimentation. The interpreter in Lisp performs
2.y one action, applving a function to its argument, therefore features (tools) like
single stepping, tracing, and symbolic debuggers are easy to implement. In addition
the simple svatax of Lisp makes logical presentation of code on a screen or on a page
natural and easv. The compiler some Lisp implementations have, is there just to speed
up the execution. The interpreter giues all the different tools together into an integrated
svsteml. [t is never necessary tor the designer programmer to think of his her code as
anvihmg ciher than the scurce code. Such a view 1s in principle possible also mn
complietely compiied programming languages, but it is much harder to achieve. The
case with which Lisp pregrams can manipulate other Lisp programs has given us a
wide varety of Lisp programming tools. This library of programming tools evolved
inT0 a programming environment that supports all the phases of programming: design,
coding, Jebugging, documentation, and maintenance. Interlisp is one example of the

ciany programnung environments developed around Lisp programmung tocls.

2. The Interlisp Programming Environment
a. Introduction to Interlisp

Interlisp is an interactive integrated prograriming environment based cn

Lisp. [t is in extensive use, and has an extensive set of user facilities; including svntax
2xzension, uniform error handling, automatic error correction (DWIM), an integrated
viructure based editor, a sophisticated debugger. a compiler, and a filing svsiem
el 470 p. 25-34]. The system is used at many sites, mostly at education centres
cuaniversitiest, and it is well documented and maintained. The Interlisp environment

has eveived cver time 1n an incremental fashion. Therefore the quality of the user

]

nterface has teen, and stll is, less than desired. The interfaces are inconsistent and

34

PR T

e A A A At s b i

L Badh Bk TRalk Tl

el -
PPPrvstvTlw Y Sw e 2 2 2.8 0ot Shek Aok Anht Aok ek Sl d

compiex, and it s difficult 1o master all the tools and facilities. The unique thing abcut
Interlisp is the following two attributes:
. The high degree of integrauion.
2 How easyv the facilittes (tcols; in the environment can be tailored, modified, and
exsended.
b. Some Facilities in Interlisp
The rcilowing section will discuss some of the important facilities in
Interlisp. Many of the 1deas are taken from Warren and Masinter: "The Interiisp
Programminy Environment” [Ref 47].

The residental svstem is defined as a system where the primary copy of the
program resides in the programumng svstem as a data structure. The user makes
changes to this copy during the interactive session, i.e. editing is done by modificazion
to this data structure.

The file package is defined as a set of functions, and interfaces to other
svstem facilities and tools. The user does not have to keep track of where things are.
and which things have changed. In modern Interlisp the file package ncrmallv operates
automatically, transparent to the user. The user no longer has to worry about
maintaming his source iles, but if he she wants to make changes to this automatic
Pookkeeping 1t 1s easy to r:define or change these operations. The general file package

supports the abstraction that the user manipuiates his her program as data while the

Masterscope is an interactive program for analvzing and cross referencing
dser programs in order to predict the effect of a proposed change to the program.
Masterscope “determunes which functions are called, how and where vanabiles are
hound, set. or referenced, which functions use particular record deciaration, etc.”
Ref 370 p. 30) When Masterscope performs its analysis it builds a database of the
result. The user has access to this database, and can interrogate using English like
gueries. In addition Masterscope can call the editor on all functions that ccntain
expressions that satisfv certain relationships specified by the user. Masterscope adds
another level of abstraction to the svstem because the user no longer has to remember
what was changed, and therefore needs new analysis, but the svstem takes care ~f this.

The interaction between different functions are done automatically, and transparent to

the user.

1

A LCCTHRF X F

&

N TR T YT ERYT TR oER Y ghnwre T MUV W W TR T T S T T
L an b o o o d Ak aud el Mesk Badt aiilagh > adieod A alid skt bt St A i i

Do What | Mean (DWIM) is the feature that facinates me the most. T'he
svstem invokes DWIM when 1t detects an error, then the DWIM attempts to guess
what the user intended to do. DWIM 1s a collection of pregrams that makes resorabie
interpretations when given unrecognized inputs at user level. The DWIM svstem 15
transparent to the user, and s an :mportant part of the user interface. The simplest,
and most visible, part of DWIM is the spelling corrector which attempts to find the
swasest mateh within a list of relevant items. This list is easilv modified, so that the user
can taiier 1 te his her needs. The spelling corrector can be used to enrorce standards
ete. te. DWIN automatically transforms input to a standard svntax.

The Programmer's Assistant is an active intermediary between the user and
the lower levels of the system. “The programmer’s assistant records. in a data structure
caiied the history list, the user’s input, a description of the side effects of the operation,
and the result of the operation” [Ref 47:p. 32]. The “undo” command is closely
related to the history list. As long as the user doesn’t tell the system to do otherwise,
the programmer’s assistant will alwavs be part of the user interface. In most cases the
programmer’s assistant is transparent to the user, and responds to commands that
manipulate the history list. The history list keeps track of what the user has tvped. so
that Kevboard input can be reused while just specifving what has changed. Interlisp
records absolutely everv change to the structure, but it does not record why it was
changed.

c. Interlisp-D Programming Environment

Interlisp-D is in genera!l Interlisp with windows added to it, and it is an
example of a single user virtual memory. The user sees the interactive integrated
programming environment as a collection of windows. Each window corresponds to a
different tocl, task or context. The introduction of bitmapped displavs, pointing
Jevices, and windows has greatly enhanced the user interface of the Interlisp-D svsiem.

One of the major disadvantages with standard Interlisp is its cumbersome

user interface, and Interlisp-D solves some of the problems.

S6

- . - - 7 7 7

E. AN OBJECT ORIENTED INTERACTIVE PROGRAMNNIING
ENVIRONMENT

i Why use Smalltalk
a. Introduction
Ihe Software Conceprs Group at Xerox Paic Alto Research Center hud us
e o4l 10 oreate a powerful informaton svstem, one in which the user cun stere,

dovess and manipulate miormanon so that the system ¢an grow das the user's

[SLLNEY

crowv. Both the number and Kinds of ssstem components should grow in propornien ©
the growth of the wusers awareness of how to effecuvelv use the susteny
Rel 30: o VI The philesophy is to choose general principles and appis them
anzermiy. That means that if we have bult some objects, we should alwats
use enhance these existing objects when possible instead of creating new ones trem
seratch. The Smailtalk svstem lets the user muke changes to the svstem itseif while it is
running, we. the user mav crash the system by modifving some objects that are critical
2or the svstem.

The specification of Smalltalk-80's virtual machine describes the required
~ehavior of any interpreter. An implementation of a Smalltalk-80 interpreter is oniv
required to exhibit external behavior which is 1dentical to that described by the fermal
speciiication as it appears in “Smalltalk-80: The Language and [ts Implementation” bv
Goidoerg and Robson. As long as the external behavior is preserved. the

implementation can make design tradeofYs to increase the performance, or meet shecial

he choice of a programming language to implement the Smalltaik-30
interpreter 1s based on the tra'deoff between the performance needed. and the ease of
:mplementation. The interpreter depends on an efficient mapping of the wirtual
machine architecture onto the available hardware resources of the processor. The
rescurces include: registers, preferred memory locations, instruction sequences, cic.
Generally a low level (assembly) language gives the implementor total freedom., but
oo she must also take total responsibiiity for correct programming. This is in contrast
1o high level languages where the designer of the compiler did the general resource
s.lecation (which often is not optimal fer the Smailtalk interpreter).

b. Features in Smalltalk

The user interface consists of manv facets and in the following Jiscussion

i

Il i Sl et o]

whd

iy

LR

s S

Views are the rectangular areas on the display screen. Views mav contain
nlv text, orly pictures, or a combination of the two. Views are the sume av windows,
e, TC select @ view is o enter a window.

The browser s a view of the classes in the Smailtalk-50 svstem. New classes
2 added to the svstem, and exisung classes are exanuned and changed, using the
nrovser. Programmers in Smaualltalk-50 define classes and methods incrementally by
:nosyvstem browsers. To be able to share these class descriptions with cthers.
ies are used for comumunicat:on. The tiles are called “code files” and allow rthe user to
conununicaie source code between one Smalltalk svstem and another. The files can

0 te used 1o communicate information from the system to ttselt at a iuter point o
ame. The file that steres changes does so by appending to it, and therefore previous
versions Of the source code can alwavs be found easily. This file also records several
other xind of information 1n order to help recovery after a svstem crash: it marks
execution of an expression in a code generator, occurence of a snapshot, etc. The file
Yormat s used oy the svstem to keep the source code for the methods on disk files,

rath

[¢)

r than within the memory of a resident system.

Error reporiing is suppiled with notifiers and debuggers. The process in
which the error i1s encountered 1s suspended and a view of this process 1s created. The
notitiers give a description of the process at the time the error was encountered. The
Jdebugger generallv gives a more detailed view, but also allows the user to change the
state cf the suspended precess before resuming it.

Trese interfaces along with the fact that Smalltalk lets the user change the
svstem utselfl so that 1t may crash, made it apparent that it was necessary to save to
Jisk the entire state of the system at certain times. This is called a “"snapshct” of the
svstem. and is currently performed automatically from time to time. In addition the
user can invoke the snapshot when needed. When a critical error occurs, the user
"boots and resumes” his her work from the previous state saved in the last snapshct.
[n Smalitalk-80 the snapshot is represented bv the virtual image format. The “changes”
file s only altered by appending data to 1t, therefore anyv previous version can be
sound.

c. Smalltalk as a Programming Environment

The programming process is assistad by several classes in Smalitaix-y0.

Different classes are used to represent the user readable code and the machine

executanie form of methods. Objects are used to represent parsers, compuers, and

NS

deeompuers Decomptiers translate between the different representaticns (methode.

te

< Omects represening classes connect methods with the otvects that use them. 1o
e Gudinion obrects renresennng Orodnisalicnd, strucrures tor classes and metheds hep tae
.. ; £ O {

rrack of the svstemis state, and cohects representing histeries of

N
)]
1
(9]
.
N
.
s
L
M 4
3
:
o
4
-
(%]
[¢%
73

., sortoare changes help antertace with other programmers. Finally objects also repres<ent
™

4 . - : " . .
b Theoeneewion state ot a method: thev are called contexts, and are simular to stuck
i Cramies oroacnivancen records of other programnung svstems. BEvervthing in Smatltair s
l". :

: danoomreet, and any object can bhe bound o anv name because no names 2re tped.
' Sealzalk hus dvnanuc tvpe checking, like Lisp, while lor example Pascal und Ada have
[. . .
~ static tvpe checking. Dynamuc type chiecking lets Smailtalk allow a message 10 ke sent
N . . < .
N 10 an ooject oniv i that object has a method to respond to the message. Any object
LI
by

with the proper protocol mav be passed to a method. In Smalltalk it 1s not possibie to
crash the svstem due to tvpe viclation.

The uniformuy of Smalltalk is onlv valid within the svstem itself. [t is not
¥ . 2ossthlie to mantain this untornuty in the interfaces to the external world, because the
external world consists of disk files, printers, etc. that are not Smalltalk objects. All
oroyrams that want 1o share information with some other program meet this probiem.

Smailtalk s a graphically oriented interactive integrated programmung
environment. [he language 15 Jdesigned so that all components in the svstem that are
accessibie 1o the user can e presented in a meaningful wav for manipulation and
obeervasion. Smalitalk builds on the model of independent communicating cbjects.
Appications written in the language are viewed in the same way as the fundamental

amies from which the svstem itsell is built. Interaction between the most prinutive

obrects is viewed in the same wayv as high level interaction between the computer and

tre user. The pure object oriented programming languages are idealiv suited fer

i -"

:nteractive ntegrated programmuiny enviroaments. A perscn working at a terminai

P
S s

respends to conditions and takes actions in tme.

»

B

Most traditional svstems are built arcund a kernel of code which cannet

casiy he modified. In the Smulltaik svstems the xernel consists of machine code and
muorseande inoorder co implenient o virtual macihine. The kKernel must he as smail as
nossitie to prevent the need for lrequent changes 1o it Smailtalk facoinates
meramienta Jdesign of the svstem. therelore we have the probiem of ensunng e
S tme svstert. The svarem tracer wakes care of this probiem. 1t a program

sunoinl omsde of Smallialk ornar o oories the whole svsrem oot tooa hle whiie o

Ny
St T TR T T S L IL S WU T, P W W VI U o v puegwe wowges S5 - |
T Ry YR, WYV, WE, VR YL S VU VVE NS VUVE oY Vo Ve

runn:ng. The system tracer lets the user live in the svstem he she v working on,
withour having to start frem scratch every time the svstem crashes. One of the henelins

Trom the svstern tracer s that it maKes it easier to use a {ully interactive mtegrated

~rograquung environment tor production appications. The total <vstem contains
many toels fuaities that are not needed in production svstems, 1.¢. compiler, dehugger,
or, comumunication, ete. The svstem tracer has the ability to strip off most ¢f these

unnecessary taols facihies. In addiwon the svstem tracer can be used to produce

(@}

‘muiations’ of exisung programs. An exampie of this is how we cun change the
foating pemnt number. We can include an appropniate transformation :n the sysiem
rracer and write out a mutation of the old program, then we can repiace the
routine mnstructon 1n the virtual machine and start up again with a mod:fied system.
This modification methed has been used in Smalltalk to change: floating point
numbers, instruction set of the virtual machine, format of compiled methods, and
encoding of small integers [Ref. 23: p. 26].

Some computer scientists feel that object oriented programming languages
can take over some of the roles from the operating svstems. Daniel Ingalls stated 1t
even sironger: “An operating svstem 1s a collection cf things that don't fit intc a

language. There shouldn't be one.” [Ref. 4§] -

F. SUMMARY OF CHAPTER

The unique thing about interactive integrated programming environmenis are
that they are used to represent and develop other programs, and to man:pulate these

other programs. The interactive integrated programming environment consists of a set

of toois, and a tool is anything that can help in the programming process. The
integration of tools are very hard. and today it is easier to do in an interpreted
programmung language with dynamic binding, !tke Lisp or Smalltalk than in a compried
~rogsramming language. In addition Lisp and Smalltalk facilitate incrementa! program
Jevelopment, ie. the program evolves as a series of experiments 1n whiach the resui
‘rom one step gives the input (o the Jdesign of the next step.

Tre user :nterfuce mav be enhanced if the [ollewing principies are foilcwed:

TONT OTOIVENCS S, POTTNUSSIVETESS, and consistency.

e

TR v FE e Ty T yTeEaeseTeEs e

s
P SN

ntegrated

Ineraclinve

ol

24

P

Ndn

¥

N0 are

(N}

el .
HE TN Y.

Sn

rammer s cepabihites.

oy
=4

N
o

hat increase the pr

.
L

enws

Vironm

-

<

P

» %
.;:' s
P W S 4

o
"
i &

I's
4

-
P, .l.
S

1
x

2 4
» ﬁ
AV

LR}

X S5

3

-
L]

L)
' t" -‘. il. J‘

.

.J KA

.
(I‘l

&

a8 Ay &

P
‘.{'-I\ 48 ki

L4

v

e - Lo s i i A A e d g
e > w

VIII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The structure of our language, also programnung languages and programming
environments, Jefine the boundanes of human thought. Therelore. even if the

ecreucel power of all languages are the same. programrung languages and

new, ’.arge. and compie,\' proolems. Todav s programming languages and programming
envirenments are specialized. and not well suited for all tvpes of problems.

[ncreased emphasis 1s put on the user interface. We have a lot of background
Knowledge n this area. out at the moment we don't know exactly how to produce the
cpumum user friendly interface. Bitmapped displays, menus and mouse-like dev.ces
nave so iur been the solution. The burden is moved from the user to the hardware and
rrozrammers of application software. The unique thing about interactive int-grated
programming environments are that thev are used to represent and deveiop other
orograms, and 1o manipulate these other programs.

[n general a homogenous representation of a programming language makes it
2usier 10 create an interactive integrated programmung envirenment. Smalltalk
Lisp are examples of this. The languages are based on a rejative small number of
consistent abstractions, and seek to provide uniform treatment of different kinds of
:nformuation: text, graphics, symbols. and numbers.

Orject oriented programnung languages Jo not give technical advantages. but
cross 1 threshold cof perception and make :t easier for the human being to scive new
and complex proklems. To be a true object oriented programmung iangusge four
eatures must be supperted: informaticn niding, data abstraction, dvnanuc binding, and
nmeritance huerarchy. A result of these features s that this theus supports the

1

vonlilanion paradigm as the most apprepnate for object onented Lan

"
[
[
(99
.

Sacasd s wn example of thic sind of wnguage, but in addition Smudutaik-N o

e c s eyt aYe v

~ { ~o TLnE OV ot "
CTal e SETATeG Programung eraaronnwent in wself.

4

va A AACE AN G Sl Al il el A G

mmﬂ" v Lhas ket hicied edteldnldnd i
g

m Smuaiutalk-80 s beth a pregramming language and an ointeractive nt
AN programmung envirenment. The Smalltalk-80 svstem has the feature thut i can modi™
}:\(- eer and thereby produce a new :nteractive mntegrated programmung enronment
L adanted 1o the user’s needs. [t can simulate the new envirenment n the existing (cids

. cnvironment, then use the simulaiion 1o actually produce the new svstem.

B. RECOMMENDATIONS

i. What Can be Done Now
In order to make the user feel more comfortable with his her programming

environment, new applications should build on skills the user already has instead of

-
.

cing him her to learn new skills. The user should stay in control of the computer

throughout the session. Emphasis should be put on responsiveness, permissiveness and
consistency when the user interface is designed. A good naming convention can help

the user to easily get the purpose of the functions, routines, objects, etc.

[nteracave ntegrated programrmung environments based on nterpreted
ocregrammung .anguages like Lisp and Smalltalk seem to be best suied tor

envirenments producing new programs, and not so much for pure execuion cf

ccmputation heavy applications.

-~

2. Future Research Areas

The interactive Integrated programmung environment of the {uture showd pay
more atteniicn to the total project development problem. Therefore 1t shouid .t lcast
ne developed 1n the foilowing directions:

I, The design and programumuing tocls shouid be even more integrated.

2. A\ zood database svstem to keep track of versions etc. 15 needed.

1. The project management tools must be mtegrated with the rest of the sastenm,
.ncluding the database.

<. Tools 1o perform semantic andiv<is dunng programnung s needed

Reduce or elrmunate the semanuc ditferences bhetween dulerent
.anguages envircnnients. (Consistent use of comumands etc.

Beth Lisp and Smalltaik et the user modify his her cwn environment

[Mereiore we nead to develop same well Jdefined princples for the user mteriice

coer to rzduee the hurden on othe user even more. Detadled speailicauons or the
nderisiing sustem s not needed

5
\

w ata

(Y]

a

3

P

A A
-~ 2w

e Wi

DT YW W W W VW T WO U e -
Lab e aoa &L d s dham s - atuth s daadh ol —
P rp— -

- APPENDIX A
A SMALLTALK-80 TERMINOLOGY

) This appendix contains 2 summary of Smalitalk-30 s ternunciogy used in this

- thess he defimitiens are taken from: "Smalitalk-80: The Language and s
[mpiementation” by Adele Geldberg and David Robson {Ret. 30].

. ¢ ABSTRACT-CLASS A class that specifies protecol. but s not ahle 10

u fullv impiement it, bV convenuicn, instandes dare

» - R .

- not created of this Kind ot class.

ot o CLASS An object that descnbes the :mplementation of a

Al ~) :

~ set of sumuidr odjects.

- ¢ INSTANCE One of the obiects described bv a clase 2 has

memory and responds 10 messages.

o [INSTANCE VARIABLE A vanable available to a single ohiect tor the

- entire hitetime of the object instance vanahios an
. e named or indexed.

- e INTERFACES The set of messages o whwh an ohjecr wun
- respend. The only wav toanteracs with an ohvedt o
- “hrough s nterface.

. ¢ MESSAGE A request for an object to carry out one ¢ s

creratons.

A '

> o MISSAGE SELECTOR The name of the tvpe ol operation a micssage
-:. roguests of ity recerver.

N ¢ METACLASS e class of 4 class

a -

- e “{ETHOD A procedure describing how teo perform one o un

o spect s Tperauons; it s made up of 1 message

b, ~atiern. :cm:omr} vaniabie deciareuion, mnd ou .
2 weguence 0poeapressions. A method iy enelatid

. WRe 3 MEestag? MAtching s Mmessdge TaTtern i

5 went tooan anstance of the dass anocvnion i

. A round.

‘I

,d
L

NN

- - Al Sl A
b catad bad cad tat ook int s Sodaul Selb bel Ao ek i

e OBJECT A component of the Smalltalk-50 <vstem
represented by seme private memory and a set o
cperations.

¢ OVERRIDING Specityving a method in a subclass for the same

message as a method n a superclass.

o PRINMITIVE An operation performed directuy oy the
smalltalk-S0 virtual machine.

e RECEIVER The object to which a message is sent.

e SUBCLASS A class that inherits varniables and methods from
an existing class.

¢ SUPERCLASS The class from which varables and methods ro
inherited.

e SYSTEM The set of classes that come with <hme Soooo 0 - -
svstem.

AD-A184 127 R SURVEY OF OBJECT ORIENTED LANGUAGES IN PROGRAMMING
NVIRONMENTS(U) NRVRL POSTGRADUATE SCHOOL MONTEREY CA

H HRRKONSEN JUN 8
UNCLRSSIFIED F/G 12/5

‘W‘i'a:i LA LA M L LU R .00 e T T rea 2w I T T e

28 2.5
= ==

i L2 o

= T =
="y
L25 fis pie

FFTEEER

erre
r
rr

i MICROCOPY RESOLUTION TEST CHART
: NATIONAL BUREAY Of STANDARDS-1963-A

-
2o -
A

3

¢

L (-JL
N

- . - ... -~ ‘-

'“ "'.'""' b\‘."a.") N r“ -' - A .»‘u»
t’n m“ﬁ. :".‘:: LR \:4,"‘ A (’H"‘-\." < "'\":j.\""

l..

o
l;‘l .| '$
‘;i AN) .‘.‘ ‘.., . DGR 5‘, - “..Q‘ e ’1 “0" " MO

o APPENDIX B
A\
R TOWER-OF-HANOI IN PROLOG

o Tower-Of-Hanoi program in Advanced A.l. Systems’ Prolog, Version M-1.13. In

order to run the program You must specify the number of disks, and the names of the
three poles used.

> hanoi<{0,From,To,0ther) := !, * nothing to do.
8 hanoi<Disk,From,To,0ther) :-
v Disk!l is Disk-1,

e hanoi{Disk!,From,0Other,Ta), 7 move top Disk-1 aside
ixb moueDisk,From,To), *: move Disk

;_F_. hanoi{(Di1skt! ,0ther ,To,From). “ move top Disk-1 back
avhl
Y

b move(Disk,From,To) :-

;i‘ nl,write('Move disk ’),write(K),
e write(’ from pole ’“),wri1te{From),
}{: write(’ to pole “),writeiTa),

:- hanni{(3,pole!,pole2,poteld).

s
LA
FASRMN

.

< 4 o

N

96

>

. s
. ‘e

-
.

-
.

8%
r~

- W
.

- LR] -
\}\‘."‘-}'\ '_-\{ T I

.t o afat _hav B Jato bl talbil A

i
&
o APPENDIX C
e TOWER-OF-HANOI IN LISP
.
{.'::s The Tower-Of-Hanoi program builds on a program found in “"LISP” by Winston
. and Horn (Ref. 20: p. 88-90).
B
Ay
;;EI (defun Hanoi nil (Transfer ‘1 '3 2 (read))) K disks on 1 first.
tj:‘-_f (defun MoveDisk (From To)
o (print (1ist From '-> To)) ;Print instruction,
(terpri)) ;Start new line.
' (defun Transfer (From To Using Height)
e (cond ((equal Height 1)
,\,; (MoveDisk From To)) ;Transfer one disk.
s (t (Transfer from ;Move from From
‘gl Using ,to Using
- To ;using To as space
o (sub 1 Height)) (K= 1) disks.
" iy (MoveDisk From To) ;Move lowest disk.
. (Transfer Using ;Move from Using
& From ,using From as space
b (sub I Height))))) (K = 1) disks.
¥
J
r
3
.
'
o
)!
oY
2
’
-
bt
b
- 97
’,
16
,.
L
"
::a‘. ! * o TR Y e L T Ty AR ERLE CHh RS TY ‘_\.*\\.{__75.\-,!‘-(..-\‘_ \ A-\‘\‘-“ :
,‘.‘. KRR R RRON 10t i VT 'i,q’d’kc ety N T iyt S TN ARSI AN e — .

APPENDIX D

.:'- TOWER-OF-HANOI IN PASCAL

¢

’. The Tower-Of-Hanoi program is based on a program in “A Taste of Smalltalk”

M by Ted Kachler and Dave Patterson [Ref. 49: p. 3-4]. MacPascal version 1.0 is used. .
W

i

N program TowersOfHanoi;

> var

' howMany : integer; (Number of dicks)

procedure MoveTower (Height, FromPole, ToPole, UsingPole : integer);
X procedure MoveDisk (FromPole, ToPole : integer);
begin

Yy writein(’FromPole’, FromPole : 3, ToPole’, ToPole : 3);

. end;

& begin {MoveTower}

5 if height > O then

) begin

‘ MoveTower({Height - 1, FromPole, UsingPole, ToPole); ,
: MoveDisk(FromPale, ToPole);

N MoveTower(Height - 1, UsingPole, ToPole, FromPole);

2 end,

. end;(MoveTower}

g begin (TowersOfHanoi}

L showtext;

> writeln(’How many disks do you want?’);

& read!n{howMany);

L MoveTower(howMany, 1, 3, 2);

, end (TowersOfHanoi)

N

"

v v
e -

"

-f. QS

7

o<,

O

\ PP U o T »
;zto, OO e AN n(3s A ""' T URIGHEUT Y, ‘\ 5.\‘;.“;'.5_ .\';.\’-"n.\'v"‘.ve""."l."n . ." g ARty

APPENDIX E
¥ TOWER-OF-HANOI IN SMALLTALK-80

‘ The Tower-Of-Ilanoi program is taken from “A Taste of Smalltalk” by Ted
b
2 Kachler and Dave Patterson [Ref. 49).

{ L 2222222222222 222222 222222222 lY}
5.

* METHOD MoveDisk:to:

(2222222222222 22222222222 222222/

moveDisk: fromPole to: toPole

o "Move Disk from s pole to enother pole.
o Print results in the transcript window"
. Transcript cr.

Y Trenscript show: (fromPole

N printString, "->', toPole printString).

tx 2222222222222 2 2 222222222 L2)2}]

* METHOD moveTower: from: to: using:
I XX X222 XXXXTYXZ222 222122222 22222 1
- moveTower: height from: fromPole to: toPole using: usingPole

"Recursive procedure to move the disk at a height from one pole to another
using @ third pin®

(height > 0) ifTrue: |

self moveTower: (height - 1) from:
. fromPole to: usingPole using: toPole.
. self moveDisk: fromPole to: toPole.
M self moveTower: (height - 1) from:
,‘ usingPole to: toPole using: fromPole}
S “Run the program by selecting and choosing ‘do it’ .
- (Object new) moveTower: 3 from: 1 to: 3 using: 2°
:
.
«
R

99

o'
.’

.
ALY i..a‘. *
. .

n

10.

11

13.

OO O i A St Tl
, v"“"" 1\‘”;5“.“.}““"‘ ,?_:‘."I'v'.‘, 3 ‘i ',‘*1, “:‘_'1. i ._,‘. Tyt .:'L. o

LIST OF REFERENCES

Morrison, Phillip and Emily, eds., Charles Babbage and His Calculating Engines,
Dover Publications, New York, 1961.

Whorf, Benjamun L., Language, Thought, and Reality, MIT Press, 1956.

MacLennan, Bruce J., Principles of Programming Languages : Design. Evaluation
and Implementation, Holt, Rheinhart and Winston, 1983.

Barstow, David R., Shrobe, Howard E., and Sandewall. Erik, [Interactive
Programming Environments, McGraw-Hill Book Company, 1984.

Miller, L. A., Natural Language Programming: Styles, strategies, and contrasts,
IBM System Journal, Vol. 20, No. 2, 1981.

Ardir, Mark, Tutorial Notes: Software Development Environments, 1EEE
Computer Society, 1987,

Batimo, J., Smalltaik with Alan Kay, Information World, Vol. 6, No. 24, June
1984,

Brooks, Ruven, Towards a theory of the cognitive process in computer
programming, Int.J. Man-Mach.Stud.9, 1977.

Weinberg, Gerald M., The Psychology of Computer Programming, Van Nostrand
Reinhold Company, New York, 1971.

Dahl, Ole-Johan, Dijkstra, Edsger W., and Hoare, C. A. R., Structured
Programming, Academic Press, New York, 1972.

Parnas, David L., Software Aspects of Strategic Defense Systems. Communication
of the ACM, Vol. 28, No. 2, December [985.

Uebbing, Johan and Young, Charles, User Interface Performance Issues, BYTE,
August 1986.

Monk, Andrew, Fundamentals of Human-Computer Interaction, Academic Press,
New York, 1985.

100

................

14.

16.

1=

IS.

19.

AR

~J
9

o iR .3 YISt B
SRR TR AR ,l', O A N A

Brocks, Ruven, A theoretical analysis of the role of documeniation in the

comprehension of computer programs, Proceedings of Human Factors 1in
Computer Svstems, Gaitersburg, Meryland, 1982.

Kowalski, Robert, Algorithm = Logic + Control, Communications of the ACM,
Vol. 22. No. 7, July 1979.

Booch. Grady, Software Engineering with ADA, Benjamin Cummings Publication
Co., 1983.

Weinberg, Gerald M., Rethinking Systems Analysis and Design, Boston, Little,
Brown, 1982

Miller. George A., The Magical Number Seven, Plus or Minus Two: Some Limits

on Qur Capacity for Processing Informauon, The Psychological Review, March
19586.

MacLennan, Bruce J., 4 Simple Software Environment Based on Objects and

Relations, NPS52-85-005, Naval Postgraduate School, Monterev, California,
1685,

Winston. Patrick Henrv and Horn, Berthoid Klaus Paul. Lisp. Addison-Weslev
Publishing Company. 1981.

Rowe, Neil C., Aruficial intelligence, Unpublished, Naval Postgraduate School,
Montereyv, California, 1986.

Buzzard, C. D. and Mudge, T. N\., Object-Based computing and the Ada Language.
[EEE Computer, March 1985.

Krasner, Glenn, Smalltalk-80: Bits of History, Words of Advice, Addison-Wesley
Publishing Company, 1983.

Kav. Allan C.. Microelectronics and the personal computer, Scientific American,
September 1977,

Stefik, Mark and Bobrow, Daniel G., Object-Oriented Programming: Themes and
Varations, Al Magazine, Vol. 6. Nc. 3, 1986.

Robson, David, Object-Oriented Software Systems, BYTE, August 1981.

Moon, David A.. Object-Oriented-Programming with Flavors, Association for
Computing Machinery, OOPSLA, 1986.

Apple, MPW Pascal Language, APDAsKMSPWP, Apple Programmer’s and
Developer's Association, 1980.

101

P AR "'
Y Satais) q',l'm"s. LN

3.

(o
(2]

W
e

40.

41.

43

4.

Nvgaard, Kristen, Basic Concepts in Object Oriented Programming, ACM Sigplan
Notices Vol. 21, No. 10, October 1986.

Goldberg, Adele and Robson, David, Smalitalk-80. The Language and its
Implementation, Addison-Wesley Publishing Company, California, 1983.

Maclennan, Bruce J., A View of Object-Oriented Programming, NPS53-83-001,
Naval Postgraduate School, Monterey, California, 1983.

Parnas, David L., On the Criteria To Be Used in Decomposing Systems into
Modules, Association for Computing Machinery, 1972,

Davis, William S., Systems Analysis and Design, Addison-Wesley Publishing
Company, 1983.

Bray, Garv and Pokrass, David, Understanding Ada: A Software Engineering
Approach, John Wiley and Sons, New York, 1985.

Pascoe, Geoffrey, A., Elements of Object-Oriented Programming, BYTE, August
1956.

Webster, Webster's Third New International Dictionary, G. & C. Merriam
Company, Massachusetts, 1961,

Strom. Rob, 4 Comparison of the Object-Oriented and Process Paradigms, ACM
Sigplan Notices, Vol 21, No. 10, October 1986.

Snyder, Alan, CommonOQObhjects: An Overview, ACM Sigplan Notices, Vol. 21, No.
10, October 1986.

Snvder, Alan, Encapsulation and Inheritance in Object-Oriented Programming
Languages, ACM Sigplan Notices, Vol. 21, No 11, November 1986.

Sandberg, David, An Alternative to Subclassing, Association for Computing
Machinery, OOPSLA, 1986.

Agha, Gul, An Overview of Actor Languages, ACM Sigplan Notices, Vol. 21, No.
10, October 1986.

Brachman, Ronald J., I Lied about the Trees, Al Magazine, Fall, 1985,

MacLennan, Bruce J., CS 4/350 Lecture Notes, Unpublished, Naval Postgraduate
School. Monterey, California, 1987.

Burke, J., Connections, Little, Brown, Boston, 1978.

102

'.',‘ 4:’.

% 8.

39.

-

i m o
-

x40 %
REAR

- -‘!r
-:’;‘CI);!ajﬂ‘ d

|

.
v

on

Tt

..;‘
N

555585

-

-
- >
-
-

- »
-
-

'
e

o [RPERL L S N Ey W
. . A AR X (M DG .("?“"'q"."‘ . ICOLIRRS AP o
R AU I O O oDt D S St) R N S 0 §

' 45.

36.

OF =N N T T W T W T

Khoshafian, Setrag N., Object Identiry, Association for Computing Machinery,
OOPSLA, 1986.

Sandewall, Erik, The Lisp Experience, Interactive Programming Environments,
McGraw-Hill Book Company, 1984.

Teidelman, Warren and Masinter, Larry, The Interlisp Programming Environment
IEEE, Computer, April 1981.

Ingals, Daniel, Design Principles Behind Smalltalk, BYTE, August 1981,

Kaehler. Ted and Patterson, Dave, A4 Taste of Smalltalk, W. W. Norton and
Company, New York, 1986.

103

“a A
-

,,,,,,

‘3‘
Y
:: INITIAL DISTRIBUTION LIST
.:e’ No. Copies
;il‘ 1. Defense Technical Information Center 2
'\ Cameron Station
Y Alexandria, VA 22304-6145
-~ 2. Library, Code 0142 2
" Naval Postgraduate School
e Monterey, CA 93943-5002
::‘ 3 Chief of Naval Operations 1
o Director, Information Svstems (OP-945)
Navy Department
™ Washington, DC 20350-2000
)
n 4. Department Chairman, Code 52 1
0 Department of Computer Science
b Naval Postgraduate School
. Monterey, CA 93943
o 5. Professor Bruce J. MacLennan, Code 52Ml l
2 Department of Computer Science
o Naval Postgraduate School
it/ Monterey, CA 93943
X 6. Protessor Gordon Bradley, Code 52Bz 1
-.' Department of Computer Science
i Naval Postgraduate School
o Monterey, CA 93943
R ~. Harald Haakonsen 3
‘;" Hoegsetevegen 3B
W N-3047 Fana
‘~ Norwayv
T
ol
-
I\-
D :.l
»
bl
S
i
-
g
. 104
~
“

.- W
: "y l!" .‘I ‘S ‘t“.l‘ .
W e .: *, o‘ ‘

! z‘l'»‘n‘

"" w9 @ g ¥ W ¥ W . e . 5
TR ’ TS -

e

l‘

v‘l !C

